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Subsystems of Quine’s “New Foundations”
with Predicativity Restrictions

M. RANDALL HOLMES

Abstract This paper presents an exposition of subsystamg and NFI of
Quine’s NF, originally defined and shown to be consistent by Célddong
with related systemd'T'P and TTI of type theory. A proof thatl'T’P (and

so NF'P) interpret the ramified theory of types is presented (this is a simplified
exposition of a result of Cral#). The new result that the consistency strength
of NFI is the same as that d?4, is demonstrated. It will also be shown that
NFT cannot be finitely axiomatized (as caff’ and NF'P).

1 Introduction This paper has two aims, both related to subsystems of Quine’s
“New Foundations” (hereinafte¥F') proposed and shown to be consistent by Ceabb
in [l The first aim is largely expository. I@], Crabke showed that the predicative
version of the simple theory of types (Russell’s theory of types as simplified by Ram-
sey) is equiconsistent with (a formalization of) the ramified theory of types. However,
Crable’s presentation is quite complex and hard to follow. We give a much more di-
rect demonstration of this equivalence (also owing much to Galvb must hasten
to add). It follows from this that predicativi8F" is also equiconsistent with the ram-
ified theory of types (with the axiom of infinity); this should be of interest because
predicativeNF is formally a much simpler theory.

The second aim is to present a new research result],|€fabke demonstrated
the consistency not only of predicative?’ (NFP) but also of an impredicative frag-
mentNFI of NF. Crable showed that Peano Arithmetic proves the consistency of
predicativeNF', and that third-order arithmeti@As, proves the consistency ofF 1.
We prove the sharper result that the consistency strengftirdf is exactly that of
second-order arithmetiéA,.

2 Simple type theory andNF  The simple theory of type§'T is a many-sorted
first-order theory with membership and equality. The sorts, céless, are indexed
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by the natural numbers. Informally, type O is inhabited by “individuals” of an unspec-
ified nature; objects of type+ 1 are sets of typa objects. This informal intuition is
embodied in the type conventions for atomic formulas: y is well-formed if and
only if the variablesx andy are of the same type, whibee y is well-formed if and
only if the type ofy is the successor of the typexf(We stipulate that each variable
in the language of T has a type, and that we have a countable supply of variables of
each type, but we avoid the notational ugliness of explicit type superscripts on each
variable.)

The axioms ofT'T' include an extensionality scheme:

axiom of extensionality  (Vxy.(VzzeXx=zey)=X=1Y)

This is a scheme because different versions are needed with varzaifleach type
(the types ofk andy will be one higher).
The axioms are completed by the scheme of comprehension:

axiom of comprehension (FA.(Yx.x € A= ¢)), for each formulap in which

the variableA does not occur free.
An informal way to state the instance of comprehension corresponding to a formula
¢ (and variablex) is “{x | ¢} exists”.

One frequently adjoins an axiom of infinity t67" and sometimes the axiom of
choice. T'T with infinity and choice is more than adequate for all classical mathe-
matics outside of set theory.

An important phenomenon iff"T is “typical ambiguity”. Any axiom of 1T,
and so any theorem, remains an axiom or theorem if the type of each variable appear-
ing in it is raised by one (and so by any uniform amount). Any object which can be
defined inTT has precise analogues in each higher type. For example, one can de-
fine natural numbers using Frege’s approach: 3, for example, is the set of all sets with
three elements (the notion of having three elements can be defined in first-order logic;
there is no circularity). But one obtains numerals 3 in each type above 2: the set of
all sets of three type 0 objects is a type 2 object, while the set of all sets of three type
1 objectsis a type 3 object, and so forth. We should be careful not to say that we have
a £quence of different numerals 3: these are objects of different sorts and so cannot
be compared pairwise or collected into a sequence!

The phenomenon of typical ambiguity can (apparently) be exploited to simplify
the theory. The first-order theory with equality and membership obtained by dropping
all indications of type from the axioms dfT" (in such a way as to create no identi-
fications of variables originally of different types), considered by Quin&jngnd
called “New Foundations” oNF', is, as far as anyone knows, consistent (its consis-
tency relative to generally accepted systems of set theory remains an open question).

The extensionality scheme @fT corresponds to a single extensionality axiom
in NF. The comprehension scheme Bf" (which we can informally describe as
“{x| ¢} exists”) doesot translate to the naive comprehension scheme which asserts
that “{x | ¢} exists” for each formula in the language of set theory. The point is that
not all formulasy can be obtained by suppressing distinctions of type in formulas of
TT.

It is possible to describe the comprehension scheméfofvithout referring to
TT.



PREDICATIVITY RESTRICTIONS 185

Definition 2.1  Let ¢ be a formula of the language of set theory andlbe a func-
tion from variables (as syntactical items) to integers. Weccalstratification of ¢ if
and only if for each atomic subformul& = y' of ¢ we haves (‘X’) = o(‘y’) and for
each atomic subformulx‘e y' of p we haves (‘X' ) + 1 =0 ('y'). We aall a formula
¢ stratified if there is a stratification ap.

The comprehension scheme 8F' (usually called the axiom (scheme) of stratified
comprehension) asserts thdk" ¢} exists” for each stratified formula. The defi-
nition of stratification can be extended to accommodate any additional predicates or
functions one could adjoin t@'T'.

We briefly recapitulate the formal definition of the theaWf'. NF is a first-
order unsorted theory with primitive predicates of equality and membership. Its ax-
ioms are:

axiom of extensionality (VXy.(Vzzex=zey)=X=Y)

axiom of stratified comprehension (FA.(VX.Xx € A = ¢)), for each stratified
formula ¢ in which the variableA does
not occur free.

NF is an unusual set theory for two reasons. First of all, the universa¥ set

{Xx | x= x} and other big sets (such as Frege natural numbers) exigtirSecondly,
the axiom of choice can be disproved (a result of Specker ifil0j). Note that
aparadoxical set likg¢x | x & x} (the Russell class) is not provided by the stratified
comprehension scheme becaMsgx is not a stratified formula.

The presence of big objects, though unfamiliar to those used to Zermelo-style
set theory, has been proved not to be problematic in any essential way. The variant
NFU of NF proposed by Jensen {f][ in which extensionality is weakened to apply
only to objects with elements (thus allowing many distinct objects without elements,
which are called atoms arrelements—thus the U) has exactly the same comprehen-
sion scheme (and so the same big sets) and is known to be consistent relative to fa-
miliar set theories. Moreover, it is also consistent with infinity and choice.

The disproof of choice inVF cannot be replicated in any subsystemNof’
which is known to be consistent. A corollary of the failure of choice is that the “ax-
iom” of infinity is provable inNF'; thus a lower bound on the consistency strength of
NF (the best lower bound known) is that 67" + Infinity. Infinity is not provable
in NFU, but it is provable in predicativ&F’, which is known to be consistent (and
the proof of infinity inNF'P makes essential use of the provability of InfinityNi).

The peculiarities ofVF' revealed by Specker’s disproof of choice are profound, un-
like the peculiarities of having big sets like the universe that are shared\iilA.

3 Predicative and ‘mildly impredicative’ theories The simple theory of types and

NF are highly impredicative theories. That is, they allow the “definitions” of total-
ities by comprehension axioms to refer to totalities which include the set being “de-
fined”. For example, the comprehension axiom which asserts the existence of the set
of natural numbers\| describes\ as the intersection of all sets of cardinal num-
bers which contain 0 and are closed under addition dflitself is a set of cardinal
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numbers which contains 0 and is closed under addition of 1; it seems that we have
“defined” A\ in terms of a class of sets to which it itself belongs.

For the record, we see no philosophical problem with the comprehension axiom
which provides us witf\(. We agree with Russell that if it were really to be regarded
as a definition, it would be circular—the correct conclusion to draw is that compre-
hension axioms are not definitions!

Russell and Whitehead proposed that the paradoxes of set theory were due to im-
predicativity and proposed to recast their systerRroicipia Mathematica to avoid
impredicativity. The original predicative type theory of Russell, called the ramified
theory of types, is quite complex; we will present a formalization of this system be-
low. A simpler predicative system is readily obtained by restricting the comprehen-
sion axioms ofI'T', and the first aim of our paper is to show that this system is in fact
equivalent in a strong sense to the ramified theory of types; each system interprets the
other readily.

We define a subtheor§T'P of TT in order to satisfy scruples about predicativ-
ity. The extensionality scheme @fTP is the same as that &fT. The comprehen-
sion scheme is restricted in a way which ensures that no object can be “defined” (pro-
vided by a comprehension axiom) when the comprehension axiom involves quantifi-
cation over the type to which the object belongs. An instance of the scheme}'
exists” is excluded ifp includes a quantifier over the type to whigh| ¢} itself would
belong (one higher than the type ®f or any higher type. Further, an instance of
“{x | ¢} exists” is excluded if any object of type higher than tha{xf ¢} is men-
tioned. It is permitted fop to refer to objects of the same typefas ¢}; for exam-
ple, the comprehension axiomiX'| x € AA X € B} exists” which “defines’AN Bis
predicative and has parametéxsnd B at the same type a&N B.

To motivate these restrictions intuitively, imagine that the types are created in
order. The definition of a type object cannot involve quantifiers over typ®r any
higher type, because the creation of typis not yet complete (so we do not know
what might be true o8ll type n objects) and the creation of still higher types has
not yet begun. The permission to use individual typabjects as parameters in the
definition of other typen objects can be understood as reflecting the fact that objects
are created in a certain order within the types; of course, no object of higher type can
be used as a parameter because no objects of higher type have yet been created.

Thus, the formal restriction on the comprehension schenf&la? is that a per-
mitted comprehension axionjX | ¢} exists” is one in which the formula contains
no bound variable with type higher than the typexahd no free variable (parameter)
with type higher than the successor of the type.of

The system of set theory obtained by suppressing the type systéffifdfn the
same way thalVF' is obtained fromI'T is called NFP or “predicative NF"”. Unlike
NF this system is known to be consistent and in fact quite weak.

The comprehension scheme/@F P can be presented in terms of stratifications.

Definition 3.1 A stratificationo of a formulag is said to bepredicative relative to
a variable x if and only if it maps all free variables to valueso(‘x’ ) 4+ 1 andall
bound variables to values o (‘ X'). A formulag is said to bepredicatively stratified
relative to x if and only if ¢ has a predicative stratification relativexo
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The instances of comprehension provided P are the assertiongX | ¢} exists”
such thaip is predicatively stratified relative ta

There is a less restrictive type thedfyI'/ which we have elsewhere described
as “mildly impredicative”. In this theory, we are permitted to “define” typebjects
using quantification over all of typg but we are still not permitted to mention objects
of type higher tham in the definition of a typen object. The definition of the set
of natural numbers succeeds Tl but fails in TTP (that is, the comprehension
axiom for A (in appropriate types) is acceptable T but not in TTP). There is
afragment of NF' obtained by dropping types from axiomsBfl'I: this theoryNFI
has the extensionality axiom @&fF and all comprehension axiom$x‘| ¢} exists”
where there is a stratificatianof ¢ such that the range efincludes no value greater
thano(‘X') + 1. We provide a suitable definition.

Definition 3.2 A stratificationo of a formulag is said to bamildly impredicative
relative to a variable x if and only if it maps all variables to values o(‘x’) + 1.
A formulag is said to bemildly impredicatively stratified relative to x if and only if
there is a mildly impredicative stratification gfrelative tox.

Then the comprehension scheme\af! provides for the existence ¢X | ¢} justin
casey is mildly impredicatively stratified relative te.

Denote the singleton operation by:x = {x}. Let Xx represent thé-fold it-
erated singleton ok: for example;?x = {{x}}. (It is useful to note for the sequel
that we use the notatiarf“ x for the set ofk-fold singletons of elements of) For
any stratified formula, the set which we can informally describe{ds« | ¢} is pro-
vided by an instance of stratified comprehension of the form(3x.“ y = (XX’ A¢)}:
the type ofy will be k higher than the type of, and ifk is large enough the formula
(Ax."y = X" Ap) will be predicatively stratified relative tg, so the existence of the
set will be asserted by TP. (Weassume that the reader can provide the formal defi-
nition of the sequence of formulas abbreviatgd= (“x” if he o she really wants it).
This is sufficient to show that the axiom of set union adjoinedfP (or to TT1)
gives a theory equivalent t67"; application of set uniork times to{¢x | ¢} yields
{X| ¢}. For the same reason, adjoining the axiom of set uniaMA® or NF'I gives
atheory equivalent tavVF.

Theorem 3.3 (Crable) NFP (and so NFI) proves the axiom of infinity.

Proof: One may define each concrete Frege natural numh&FiR just as inNF';
moreover, one may define the successor operation on Frege natural numbers just as
in NF. We gve the explicit definitions.

Definition 3.4 0 isdefined ag<}, the set of all sets with no elements.

Definition 3.5 For any setA, A+ 1l isdefined agauU {x} | ae€ AA x ¢ a}, the set
of all disjoint unions of elements ok with singletons.

Observation 3.6 The sets 0 andh + 1 are provided by instances of predicative
stratified comprehension.

Definition 3.7 We call a setl inductive if and only if 0 € | and (Va.ae | —
a+1lel).



188 M. RANDALL HOLMES

Definition 3.8  We say that an objeact is anatural number if and only if it belongs
to all inductive sets. We may refer to the class of natural numbefg§,asut we do
not assume thal( is a set.

Observation 3.9 The set of all inductive sets is predicatively defined (though this

is not important to us here); the set of all natural numberstsprovided by the
scheme of predicative stratified comprehension (though it is provided by the scheme
of “mildly impredicative” stratified comprehension 8fF'7) and it turns out that there

are models ofVE'P in which A is not a set.

Definition 3.10 A set is said to béinite if and only if it belongs to some natural
number. There is no presumption that the finite sets make up a set. A setis said to be
infiniteif it is not finite. We refer to the assertion that the universahset infinite as

the “axiom of infinity”.

Wedefineaset) = {A| (Vae A.(VbCa.(3c.(Vd.dec= Fedeceneech)))};
informally, this is the set of all seta such that all subsets of elemeitsf A have
unions. We provide it in fully expanded form to allow the reader to check that pred-
icative stratified comprehension does provide this set in spite of the fact that the im-
predicative notion of set union is involved; the relative type of each variable in the
set definition is less than or equal to thatAf

We show thatJ is inductive. Itis necessary to check thattfe U,a € A, and
X € a, then all subsets d U {x} have unions. If such a subdetioes not contair,
it has a union because it is a subsetoflf it containsx, thenb — {x} has a union
because itis a subsetafandx U | J(b — {x}) exists and equals)b. Thus the set)
is inductive and thus contains all natural numbers.

If the universeV were finite, it would belong to some natural number, which
would in turn belong tdJ. It would follow from this that every subset &f, andso
every set, would have a union, which implies that all consequences aVfullin-
cluding the assertionV is infinite” would hold. This is a contradiction, 96 must
be infinite.

Other forms of the axiom of infinity given in th&¥F" literature, such as the as-
sertion that the empty set is not a natural number, can be proved. Itis easy to see that
if @ belongs to all sets containing 0 and closed under successor, then sd/pthst
singleton of the universe, becauséself and.V are the only sets withs as their suc-
cessor. But we have just shown th&t cannot be a natural number, because no set
containingV can be a natural number. Thus the empty set cannot be a natural number
either. The proof is complete. O

In [B], Quine presented a definition of the ordered pair suitable for ug&Zirwith
Infinity or NF which is “type level”: the pair is of the same type as its projections.
Note that this is not true of the Kuratowski paffx}, {x, y}} is two types higher than
its projectionsx andy.

We describe Quine’s definition of the ordered pair. Define a mag follows:
o(n) =n+1forne N\ ando(x) = x for x ¢ A[. Defineo(A) aso* A for any
set A, and defines»(A) as (o A) U {0}. Then the Quine paifA, B) is defined as
(01" A) U (02" B). Let (A, B)~ be the set of elements ¢A, B) which do not contain
Oand let(A, B)™ be the set of elements oA, B) which do contain 0. Definez(A)
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aso—1* Afor any setA. Itisstraightforward to establish thag“ ((A, B)~) = Aand
03" ((A, B)") = B, so we can recover the projections from the pair.

Adapting this definition of the pair t&'TP or NFP requires care. The difficulty
is that the class of natural numbers is not necessarily a set in the predicative theories,
so there is no reason to believe thato,, or o3 are operations which take sets to sets.
The definition of the pair and its projections is otherwise predicatively acceptable.

A prerequisite for the modified definition is the notion of a cardinal which has
to be defined in terms of the usual Kuratowski pair at this point.

Definition 3.11 The cardinal of a set A, written | A|, is defined as the s€i?B |

(3 1. f is a bijection fromA to B)}, where the notion of bijection (and the notion of
function on which it depends) are defined in the natural way using the Kuratowski
pair. The appearance of the double singletoBais the generic element is due to
the fact that the type of the bijectiohwitnessing the equinumerousnessBodnd A

is two higher than the type d, and the type of an element of the set being defined
must be at least this high to satisfy predicativity restrictions.

It is demonstrable ifl"TP that cardinals with the same successor are the same car-
dinal (over an arbitrary type). We can then define the Quine pailfii® or NF'P

just as above, except that the mawill be the successor map on cardinals instead of
the successor map on natural numbers. Just d&inInfinity needs to hold for the
definition to succeed.

The type differential here is considerable: if typgsatisfies Infinity (so the defi-
nition works), the type of any sé&% of typen objects im + 1, the type of the cardinal-
ity |A] of Aisn+ 4, the type of the set of cardinals of sets of typebjects isn + 5,
and the type in which the pair is definednis- 6. The pair is also definable on each
type aboven + 6 (all types above an infinite type are infinite; types below an infinite
type need not be (internally) infinite in predicative type theory).

Since a type-level pair is available MFP, functions and relations can be de-
fined to be one type higher than the elements of their domains and ranges instead of
three types higher. One consequence of this is that the bizarre definition of cardinals
as sets of double singletons forced on us by predicativity restrictions can be replaced
with the usual ong|@| = { B | there is a bijection fronf\ onto B}) once the type-level
pair is available.

Itis interesting to observe that the definitions of equinumerousness using the Ku-
ratowski pair and the modified Quine pair do not coincide. The precise relationship
is that setsA and B have a bijection between them represented as a set of Kuratowski
pairs precisely if>* A and:?“ B have a bijection between them represented as a set of
modified Quine pairs. In the predicative context, it is possible for the singleton im-
ages of two sets to have the same cardinality when the sets themselves have different
cardinalities.

We present a proof of the consistency/®¥/ (and thus ofNF'P). This proof is
not the same as the one [ it is more closely related to the consistency proof for
NFU given by Jensen.

In preparation for this proof, we cite basic results of Specker (ffof) vhich
we will not prove here.

Theorem 3.12 (Specker) NF (respectively, NFU, NFP) isconsistent if and only



190 M. RANDALL HOLMES
if TT (respectively, TTU, TTP) with the ambiguity scheme is consistent.

Theorem 3.13 (Specker) NF (respectively, NFU, NFP) is consistent if and only
if thereisamodel of T'T (respectively, TTU, TTP) whichisisomorphic to its sub-
model obtained by relabeling each positive type n + 1 astype n.

Specker’s original results were faiF’ alone (the other theories had not yet been pro-
posed) but they adapt easily to the subtheories.

It is straightforward to construct a model @GfT'I in which all infinite sets in
each type are the same size. We describe an inductive construction of such a model.
Let type 0 be any countably infinite set on which a notion of ordered pair is defined.
Suppose that types ®©have been defined with the following properties: each type
is countably infinite and supports a type level ordered pair, and each #yfiecon-
tains a bijection between typeand the set oi-fold singletons of type 0 objects. We
provisionally let typen + 1 be the true power set of type. We define the pair in
typen+ 1 asfollows: letx andy be two distinct elements of typeand let(a, b) be
{(@,x)|a eau{(b,y)| b eb}forany typen+ 1 objectsa andb. The problem
we have is that the provisional typet 1 istoo large (it is uncountably infinite). The
solution is to replace the provisional model of typesr0+1 by a Skolem hull of
the theory of the provisional model with equality, membership, and pair projections
in each type as predicates, and with all the elements of typesa@-eonstants. This
will be a countably infinite structure in which types @-are unchanged and the new
typen + 1 satisfies the desired conditions.

In such a model, any set of a given type which is externally seen to be infinite has
the same cardinality in the internal sense of the model as any other such set; all exter-
nally infinite sets of a given type are externally countably infinite, so the provisional
version of the next higher type contains maps witnessing their equinumerousness, and
the formation of the Skolem hull preserves the existence of such maps, withessing the
fact that the sets have the same cardinality internally.

Itis thus possible to define a “membership” relation of objects of typebjects
of any typej > i (notjustj =i+ 1). This relationej; is defined as follows: for each
j > i choose a bijectiorfij from J='~1*V/! (whereV' is notation for typé as a set) to
Vi~1 and definex gj; y as fij (:/7'=1x) e y. Itisstraightforward to establish that any
increasing sequence of types in the given model is a modélldfwhen appropriate
€ij's are used as membership relations between successive types in the sequence.

With each finite set of sentenc&sof the language of'T" involving types 0 to
n— 1, we associate a partition of tineelement sets of types of our model. The par-
tition will have no more than!2! compartments: it will be determined by the truth
values of the sentences Bfwhen the types 0 to — 1 are replaced by the elements of
the n-element set in increasing order, with appropriate replacements of occurrences
of € with gj;’s.

By Ramsey’s theorem, there is an infinite sequence of types which is typically
ambiguous for the partition associated w¥hand so satisfies typical ambiguity for
the formulas inz. By compactness, the scheme of typical ambiguity can consistently
be adjoined tdl'T'I. By Specker’s theorems cited abovgF[ is equiconsistent with
TTI with the ambiguity scheme. Sind€F'P is a fragment ofNFI, NFP is also
consistent.
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If we work in a nonstandard model of set theory with an external automorphism
j such thatj(N) > N for a (nonstandard) natural numkérwe can build an explicit
model of NFI. The infinite sequence of typé$ (N)}iea (a proper class in our non-
standard model of set theory) in the modelltf] constructed above, with the mem-
bership relations ;i\, ji+1(n) between successive types, gives a model'd¥ with
an isomorphism between itself and its submodel obtained by relabeling each positive
typen+ 1 astypen. A model of NFI is obtained as follows: use typé¢ as the do-
main of the model and defineeng y asx enjny j(Y).

4 The ramified theory of typesI TPandNFP  Weintroduce a formalization (with
variants) of the ramified theory of types of the second edition of Russell and White-
head'sPrincipia Mathematica.

The guiding idea of the ramified theory of types is that no object may be defined
using quantification over a totality to which the object itself belongs. The variationsin
our treatment stem from whether one wishes to include types of relations or just types
of sets. We will start with a formalization which admits just types for sets (following
Crabte in [2J) and indicate how it could be adapted to handle types of relations (or
even functions).

A type in the scheme we adopt following Crébis afinite strictly increasing
sequence of natural numbers whose first term is 0. The sequence whose first and only
term is 0, which we will denote by0), will be the base type, corresponding to type
0in TT. We use the notatios™ for the sequence obtained by dropping the last term
of the sequence(whens # (0)). We use the notation mé&s) for the last term in the
(increasing) sequence

The elements of an object of typavill be objects of types™. The extensionality
axiom of the ramified theory of types asserts as usual that objects of any type other
than the base type are equal if and only if they have the same elements. The compre-
hension scheme provides for the existencie®f | ¢}°, the set of typeof all x of type
s~ such that, just in casep has no parameter of a typsuch that mag) > max(s)
and contains no bound variable of a tymich that mag) > max(s). This criterion
should remind one of the criteria for comprehensiorfifiP.

This scheme has the effect that any set can be defined by quantification only over
types represented by sequences with a smaller maximum element and using parame-
ters of types represented by sequences with no larger maximum element, which has
the effect of enforcing predicativity. It appears to be more expressiveftidn be-
cause it allows one to define subsets of any given type using quantifiers over any other
type, by providing each type with multiple power set types. Metaphorically, one can
think of the base typ&)) as being “created” first, then the sole tytpeith max(t) =1,
then the two types with mak) = 2, and at thenth stage all typeswith max(t) = n
would be created(0) is the type of individuals created firg) 1) is the type of sets
of individuals created at the second sta@¥] 2) is the type of sets of typé 1) ob-
jects (sets of sets of individuals) created at the third stage, wb2gis a new type
of sets of individuals, also created at the third stage; at the next s@agewill be
yet another type inhabited by sets of individuals, wikild. 3) and(0 2 3) will be two
subtly different new types of sets of sets of individuals, inhabitants of which will have
elements of type® 1) and(0 2), respectively. The details of the restrictions on com-
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prehension are motivated in the same way a$'iP: in the definition of a set of a
certain type, quantification over types not yet created is obviously not possible; pa-
rameters of types created at the same stage are permitted because we do not imagine
that all objects in any given type are created simultaneously. Each type has a new
“power set” created at each subsequent stage.

This already “ramified” picture can be further ramified by allowing relations of
arbitrary arity or even functions. The types could then be coded as nonempty trees
labeled with natural numbers and with O at all leaves, rather than sequences of positive
natural numbers: the code for arary relation type would haveordered immediate
subtrees, théh ordered subtree being the type of tieargument to be supplied to
the relation. The code for a function type would have an additional immediate subtree
for the type of its output. The trees would be “increasing” in the sense that the natural
number labeling the root of a tree would be larger than the natural numbers labeling
the roots of each child tree. The extensionality and comprehension schemes would
be essentially the same, with the value of the function coding a type at the root of its
domain playing the role of mgg) above.

The ramified type system, even when augmented with relations and functions,
is mutually interpretable with the much simpler predicative type thebiP. An
immediate corollary is that the ramified theory of types (with the assumption that the
base type is infinite) is interpretable in the very simple set thédry’. Of course,
there are some philosophical questions about the stati¥#'éf, which is not in any
obvious sense a predicative theory.

We will now establish the mutual interpretability @fT’P and the set version of
ramified type theory. It is straightforward to see that ramified type theory interprets
TTP. Infact, there are many interpretations: any sequgmééypes in ramified type
theory with the property that = t;_ , for each index provides a direct interpretation
of TTP, using the typd; as type.

The subtler thing is to see that the apparently weaker thédry actually has
the full expressive power of ramified type theory. We describe the interpretation,
then verify that it works. The base typ@) of ramified type theory is coded by type
0. Each type of ramified type theory is coded by a subset of the type (axf
TTP (a set of type maft) + 1). This might appear to create a problem with mem-
bership, as ma™) is not necessarily the predecessor of sxxthis is handled by
the stipulation that membership of elements of tgpén elements of typsis coded
by membership of suitably iterated singletons of the elements of the interpreted type
max(s~) in objects of the interpreted type m@. If types™ is coded by a subset
A of type maxs~), type s is coded byPMXS-maxsT)—1« A the set of all sets of
(max(s) — max(s~) — 1)-fold iterated singletons of elements Af This is enough
to determine the representation of each type of the ramified theory precisely.

In the case of the more complex theories with function and relation types, the sin-
gleton operation will need to be applied a different number of times to each argument
of the function or relation when the arguments are of different types: for example, a
stage 4 type inhabited by relations between a stage 1 type and a stage 2 type will be
represented by a set of type 4 objects whose elements are pairs with first projection
a double singleton of a type 1 object and second projection a singleton of a type 2
object. The theories with relation and function types can only be handled in the way
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we describe if a type-level ordered pair is available; otherwise the typemetaple
relative to its arguments will depend anmaking a uniform representation impossi-
ble. Itis necessary in this case to add the type-level ordered pair as a primitive notion
to TTP. The pair is only definable in general models©T'P in types 6 and above;
truncating a model of TP at type 6 gives a model &f TP in which a type level pair

is available at every type, so we can see that we do not essentially strerfgitien

by adding the type-level pair as a primitive.

The verification of extensionality in this interpretation is trivial. The verifica-
tion of comprehension is hardly less trivial when it is recognized that the characteris-
tic max(s) of typess which controls the predicativity restriction in the ramified the-
ory is mapped precisely to the type Tril'P, and the restrictions on these parameters
in comprehension in the two theories are the same: a permitted comprehension ax-
iom in the ramified theory will map to a permitted comprehension axiofiiiP. A
guantifier over a typs of ramified type theory will be interpreted by a quantifier over
the type maxs) of T'TP bounded by a set of type mésy + 1, which will become
an additional parameter of type m@ax+ 1 in the interpretation. A comprehension
axiom{x | ¢} of the ramified type theory introducing a set of tygsatisfies the con-
dition that each bound variable will be of a typwith max(t) < max(s); each bound
variable in the interpreted version is thus of type tfiaxx max(s), bounded by a pa-
rameter of type mait) + 1 < max(s). The interpreted version of the comprehension
axiom introduces the set of iterated singletons in type (®)ax 1 of objects of type
max(s~) which satisfy a condition involving bound variables of typesax(s) and
parameters of types max(s) (the interpreted versions of the original parameters plus
parameters introduced to bound interpreted quantifiers); this will be a comprehension
axiom of TTP.

So we have completed the demonstration of the following.

Theorem 4.1  TTP and ramified type theory are mutually interpretable; ramified
type theory isinterpretable in NFP.

Since T'TP interprets ramified type theory, it follows immediately thék'P inter-

prets ramified type theoryNEP is a very appealing theory; it is not very strong
(Crabte showed that it is actually weaker than Peano Arithmetic) but it is very ex-
pressive, and it is strong enough to do a good deal of elementary mathematics. It
combines Russell's concerns about predicativity with Quine’s solution to the inele-
gance of types and the “hall of mirrors” effect of typical ambiguity. In addition, there
is the surprise thaVF'P actually proves infinity. But there is the potential philosoph-
ical difficulty that NF'P (in spite of its etymology) may not really be a predicative
theory; sets can belong to themselves in this theory after all. We do not rule out the
possibility that there is a justification f&f P on predicative grounds, but we haven't
yet produced one ourselves.

5 NFI has the same strength a@A, NFI is evidently stronger thavEF'P. In

NF1I, the set of natural numbers exists, and in fét/ interpretsPA, (second-order
arithmetic) in the natural way; the theory of natural numbers and sets of natural num-
bers defined in the natural way MFI provides a direct interpretation &4,. Com-
prehension axioms defining sets of natural numberéfiti may freely employ quan-
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tifiers over natural numbers (one type lower than the type of the set being defined) and
over sets of natural numbers (at the same type as the set being defined); this is all that
is needed to interpret comprehension axiom® 4.

The remainder of this section is devoted to the proof of the much less obvious
fact that the consistency d?A, implies the consistency aVFI: the two systems
have exactly the same consistency strength.

Wefirst define quantifier classes of formulas in a standard way. In the following
discussion, all formulas are assumed to be presented in prenex form with all quanti-
fiers over sets of natural numbers preceding all quantifiers over natural numbers. (A
quantifier over natural numbers appearing before a quantifier over classes could be
converted to a quantifier over one-element sets of natural numbers; it can also be ab-
sorbed into a following quantifier over sets of hatural numbers by considering the fact
that a function from a finite list of natural numbers to a set of natural numbers can be
coded as a set of natural numbers).

A X or ITg formulais a formula with no quantifiers over sets of natural numbers
at all (the two terms are synonymous). 3,1 formula results when one or more
existential quantifiers are prefixed tdla formula; all,, 1 formula results when one
or more universal quantifiers are prefixed tBaformula. It is useful to note that any
finite tuple of sets of natural numbers can be coded by a single set of natural numbers,
so one can think of &, formula as having a single existential quantifier leading a
string of n alternating quantifiers over sets of natural numbers, afg Bormula as
having a single universal quantifier leading a stringn@fternating quantifiers over
sets of natural numbers.

Satisfaction of formulas and truth of sentences can be defined in the usual way
in PA, (for restricted classes of sentences, of course). It is not hard to show that sat-
isfaction for formulas without quantifiers over seky(sentences) i&1. The reader
may consult Roger] for a proof of the fact that satisfaction &, ; formulas can
be represented by®,,; formula, which is what we require for this development. It
is, of course, impossible (by Tarski's well-known theorem on the definability of truth)
for PA; to represent satisfaction of formulas BA, in general. For one who is fa-
miliar with the details of the proof of Tarski’'s theorem, it might be useful to point out
that the fact that the class &, 1 sentences can contain a representation of truth for
sentences of that same class is not problematic because this class is not closed under
negation.

We represnt by T'TI the fragment ofl"TI axiomatized by those axioms of
TTI which areX; sentences (or which have prenex forms which®rsentences)
for somei < k. We show thatT'TIy is interpretable inPA,. We do this by showing
that TTIy, then-type fragment ofI'T1y, is interpretable for each natural number
in a uniform manner. CIearI;TTIﬁ is interpretable inPA»; all that is required is a
domain of elements with the equality relation on them; we stipulate further that we
will use a countably infinite domain as our type O.

Suppose that we have model&d’l rk‘“ (whose highest type is typ®; each of
the types 0-n will be a countably infinite structure whose elements are natural num-
bers. We show how to modéTTIE*Z. We provisionally take our type + 1 to con-
sist of the subsets of the typeof our model; this must be provisional because this
makes typen + 1 too large with elements of the wrong sort. We can definexthe
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theory of this structure using the definition of truth tog sentences. We then enrich
the language of T’/ E*Z with Hilbert symbols (so that we can represent witnesses to
existential statements) and with all elements of types @s-constants. We define a
maximal consistent extension of thg theory of our provisional model of types 0—
n + 1 with the enriched language including Hilbert symbols; since our language is
countable, we can do this without an appeal to the axiom of choice. From this max-
imal consistent extension, we can extract a countably infinite term model of types
0-n+1, satisfyingTTIE*z. This construction can be described in a uniform man-
ner (using a higher quantifier class thag!); so we can construct a model GfT'I
in PA,. We can then follow the proof of consistency 8%'1 above; the infinite Ram-
sey theorem is provable iRA,, so wefind that PA, proves the consistency ofF 1y
for each concret&. This means that we can actually build models\afI in PA,
(as, for instance, by the method of taking maximal consistent extensions of theories
to build a term model).

SincePA, proves the consistency of eadt#/, it must be the case that the con-
sistency ofPA, implies the consistency &¥F'I (which is the union of all théVFIs).
This also demonstrates thAi'I cannot be finitely axiomatized, as otherwiSé'/
would be equivalent to som&FIx and PA, would prove the consistency of this
NFIg, so of NFI, so of PA, itself, which is impossible by &del's second incom-
pleteness theorem. It is known thd# and NFP can be finitely axiomatized. The
standard reference for a finite axiomatizatiomaf is Hailperin [3] but the axioma-
tization given there cannot easily be adaptedoP. The finite axiomatization for
NFU given in Holmes[E] can be adapted tyF P, if one adds strong extensionality
and drops the axiom of set union.

So we have completed the proof of the following.

Theorem 5.1  PA; isequiconsistent with NF1I.

6 Conclusions and questions Webelieve that these results basically settle the sta-
tus of the theonVFI. Crable showed that its consistency strength was less than that
of third-order arithmetic; here we show that it is exactly that of second-order arith-
metic. The apparent ability to apply a “power set” construction repeatedly to an infi-
nite set inNF'I is in some sense illusoryWFE'T can be encoded in a system in which
the power set operation is applied to an infinite set just once. But the apparent ability
to iterate the power set construction givVéBT expressive power greater than that of
second-order arithmetic in practical terms:Nid'/ we can define the rational num-
bers just as we would itVF' or ZF'C, then define the reals as Dedekind cuts in the
rationals, and go on to represent such things as functions from the reals to the reals as
well. The analysis one is then able to do is predicative; the least upper bound prop-
erty does not hold in general for these “reals”, but the expressive power of a full set
theory is convenient nonetheless.

We have shown elsewhere (e.g., in Holmig) fhat NFI admits consistent ex-
tensions of arbitrarily high consistency strength, including ones in which arithmetic
and analysis are standard. Some questions remain Aot We are interested in
finding out its exact consistency strength and exploring the extent to which elemen-
tary mathematical constructions can be carried ouVFP. Even more thanVFi,
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NF'P appeals to us as combining extreme weakness in terms of consistency strength
with the full expressive power of set theory. We are also interested in the (philosoph-
ical rather than mathematical) question of whetNétP can really be motivated on a
purely predicative basis: the fact that it seems to be no strongefittigh+ Infinity
suggests that it may be possible to do this.

REFERENCES

[1] Crabke, M., “On the consistency of an impredicative subsystem of Quine’s Nig”
Journal of Symbolic Logic, vol. 47 (1982), pp. 131-36.
03081 JnJE]

[2] Crabke, M., “Ramification et pedicativie,” Logique et Analyse, vol. 84 (1978),
pp. 399-4197h[0449 03008 MR 81e-03006)a]

[3] Hailperin, T., “A set of axioms for logic, The Journal of Symbolic Logic, vol. 9 (1944),
pp. 1~-19[Zbl 0060.02201 MR 5:1974 15

[4] Holmes, M. R., “The equivalence of NF-style set theories with ‘tangled’ type theories;
the construction of omega-models of predicative NF (and mofégJournal of Sym-

bolic Logic, vol. 60 (1995), pp. 178—8&b[0819.03044[ b

[5] Holmes, M. R.,Elementary Set Theory with a Universal Set, Academia, Louvain-la-
Neuve, 19987b[ 0959.03001 MR 2001c:0308B] 5

[6] Jensen, R. B., “Onthe consistency of a slight(?) modification of Quine’s 8jfathese,

vol. 19 (1969), pp. 250-6@b[0202.01001[}

[7] Quine, W. V., “New foundations for mathematical logicAmerican Mathematical
Monthly, vol. 44 (1937), pp. 70-8({bl 0016.19301]

[8] Quine, W. V., “On ordered pairs,The Journal of Symbolic Logic, vol. 10 (1945),
pp. 95-96[Zbl 0060.1241# MR 7:185¢ 3

[9] Rogers, H.,The Theory of Recursive Functions and Effective Computability, The MIT
Press, Cambridge, 1988. See Theorem XIII, Corollary Xllla, Corollary XIV, in Section
16.2, pp. 386-90[E]

[10] Specker, E. P., “The axiom of choice in Quine’s ‘New foundations for mathematical
logic’,” Proceedings of the National Academy of Sciences of the USA, vol. 39 (1953),
pp. 972-75Zb1 0051.03708 MR 15:4931h 12

[11] Specker, E. P., “Typical ambiguity,” pp. 116—124 iogic, Methodol ogy and Philosophy
of Science, edited by E. Nagel, Stanford University Press, Palo Alto, 1962.
Zbr0156.0270I MR 28:17236 13

Department of Mathematics
Boise Sate University

1910 University Drive
Boise ID 83725

email: |hal h.i



http://www.emis.de/cgi-bin/MATH-item?0487.03024
http://www.ams.org/mathscinet-getitem?mr=83d:03061
http://www.emis.de/cgi-bin/MATH-item?0449.03009
http://www.ams.org/mathscinet-getitem?mr=81e:03006
http://www.emis.de/cgi-bin/MATH-item?0060.02201
http://www.ams.org/mathscinet-getitem?mr=5:197a
http://www.emis.de/cgi-bin/MATH-item?0819.03044
http://www.emis.de/cgi-bin/MATH-item?0959.03001
http://www.ams.org/mathscinet-getitem?mr=2001c:03089
http://www.emis.de/cgi-bin/MATH-item?0202.01001
http://www.emis.de/cgi-bin/MATH-item?0016.19301
http://www.emis.de/cgi-bin/MATH-item?0060.12414
http://www.ams.org/mathscinet-getitem?mr=7:185c
http://www.emis.de/cgi-bin/MATH-item?0051.03705
http://www.ams.org/mathscinet-getitem?mr=15:493b
http://www.emis.de/cgi-bin/MATH-item?0156.02101
http://www.ams.org/mathscinet-getitem?mr=28:1129
mailto: holmes@math.idbsu.edu

