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Subsystems of Quine’s “New Foundations”
with Predicativity Restrictions

M. RANDALL HOLMES

Abstract This paper presents an exposition of subsystemsNFP andNFI of
Quine’sNF , originally defined and shown to be consistent by Crabbé, along
with related systemsTTP andTTI of type theory. A proof thatTTP (and
soNFP ) interpret the ramified theory of types is presented (this is a simplified
exposition of a result of Crabbé). The new result that the consistency strength
of NFI is the same as that ofPA2 is demonstrated. It will also be shown that
NFI cannot be finitely axiomatized (as canNF andNFP ).

1 Introduction This paper has two aims, both related to subsystems of Quine’s
“New Foundations” (hereinafterNF ) proposed and shown to be consistent by Crabbé
in [1]. The first aim is largely expository. In [2], Crabb́eshowed that the predicative
version of the simple theory of types (Russell’s theory of types as simplified by Ram-
sey) is equiconsistent with (a formalization of) the ramified theory of types. However,
Crabb́e’s presentation is quite complex and hard to follow. We give a much more di-
rect demonstration of this equivalence (also owing much to Crabbé, we must hasten
to add). It follows from this that predicativeNF is also equiconsistent with the ram-
ified theory of types (with the axiom of infinity); this should be of interest because
predicativeNF is formally a much simpler theory.

The second aim is to present a new research result. In [1], Crabb́edemonstrated
the consistency not only of predicativeNF (NFP ) but also of an impredicative frag-
mentNFI of NF . Crabb́e showed that Peano Arithmetic proves the consistency of
predicativeNF , and that third-order arithmetic,PA3, proves the consistency ofNFI .
We prove the sharper result that the consistency strength ofNFI is exactly that of
second-order arithmetic,PA2.

2 Simple type theory andNF The simple theory of typesTT is a many-sorted
first-order theory with membership and equality. The sorts, calledtypes, are indexed
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by the natural numbers. Informally, type 0 is inhabited by “individuals” of an unspec-
ified nature; objects of typen + 1 are sets of typen objects. This informal intuition is
embodied in the type conventions for atomic formulas:x = y is well-formed if and
only if the variablesx andy are of the same type, whilex ∈ y is well-formed if and
only if the type ofy is the successor of the type ofx. (Westipulate that each variable
in the language ofTT has a type, and that we have a countable supply of variables of
each type, but we avoid the notational ugliness of explicit type superscripts on each
variable.)

The axioms ofTT include an extensionality scheme:

axiom of extensionality (∀xy.(∀z.z ∈ x ≡ z ∈ y) ≡ x = y)

This is a scheme because different versions are needed with variablesz of each type
(the types ofx andy will be one higher).

The axioms are completed by the scheme of comprehension:

axiom of comprehension (∃A.(∀x.x ∈ A ≡ ϕ)), for each formulaϕ in which
the variableA does not occur free.

An informal way to state the instance of comprehension corresponding to a formula
ϕ (and variablex) is “{x | ϕ} exists”.

One frequently adjoins an axiom of infinity toTT and sometimes the axiom of
choice. TT with infinity and choice is more than adequate for all classical mathe-
matics outside of set theory.

An important phenomenon inTT is “typical ambiguity”. Any axiom ofTT ,
and so any theorem, remains an axiom or theorem if the type of each variable appear-
ing in it is raised by one (and so by any uniform amount). Any object which can be
defined inTT has precise analogues in each higher type. For example, one can de-
fine natural numbers using Frege’s approach: 3, for example, is the set of all sets with
three elements (the notion of having three elements can be defined in first-order logic;
there is no circularity). But one obtains numerals 3 in each type above 2: the set of
all sets of three type 0 objects is a type 2 object, while the set of all sets of three type
1 objects is a type 3 object, and so forth. We should be careful not to say that we have
a sequence of different numerals 3: these are objects of different sorts and so cannot
be compared pairwise or collected into a sequence!

The phenomenon of typical ambiguity can (apparently) be exploited to simplify
the theory. The first-order theory with equality and membership obtained by dropping
all indications of type from the axioms ofTT (in such a way as to create no identi-
fications of variables originally of different types), considered by Quine in [7], and
called “New Foundations” orNF , is, as far as anyone knows, consistent (its consis-
tency relative to generally accepted systems of set theory remains an open question).

The extensionality scheme ofTT corresponds to a single extensionality axiom
in NF . The comprehension scheme ofTT (which we can informally describe as
“{x | ϕ} exists”) doesnot translate to the naive comprehension scheme which asserts
that “{x | ϕ} exists” for each formulaϕ in the language of set theory. The point is that
not all formulasϕ can be obtained by suppressing distinctions of type in formulas of
TT .

It is possible to describe the comprehension scheme ofNF without referring to
TT .
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Definition 2.1 Let ϕ be a formula of the language of set theory and letσ be a func-
tion from variables (as syntactical items) to integers. We callσ astratification of ϕ if
and only if for each atomic subformula ‘x = y’ of ϕ we haveσ(‘ x’ ) = σ(‘ y’ ) and for
each atomic subformula ‘x ∈ y’ of ϕ we haveσ(‘ x’ ) + 1 = σ(‘ y’ ). We call a formula
ϕ stratified if there is a stratification ofϕ.

The comprehension scheme ofNF (usually called the axiom (scheme) of stratified
comprehension) asserts that “{x | ϕ} exists” for each stratified formulaϕ. The defi-
nition of stratification can be extended to accommodate any additional predicates or
functions one could adjoin toTT .

We briefly recapitulate the formal definition of the theoryNF . NF is a first-
order unsorted theory with primitive predicates of equality and membership. Its ax-
ioms are:

axiom of extensionality (∀xy.(∀z.z ∈ x ≡ z ∈ y) ≡ x = y)

axiom of stratified comprehension (∃A.(∀x.x ∈ A ≡ ϕ)), for each stratified
formula ϕ in which the variableA does
not occur free.

NF is an unusual set theory for two reasons. First of all, the universal setV =
{x | x = x} and other big sets (such as Frege natural numbers) exist inNF . Secondly,
the axiom of choice can be disproved inNF (a result of Specker in [10]). Note that
a paradoxical set like{x | x �∈ x} (the Russell class) is not provided by the stratified
comprehension scheme becausex �∈ x is not a stratified formula.

The presence of big objects, though unfamiliar to those used to Zermelo-style
set theory, has been proved not to be problematic in any essential way. The variant
NFU of NF proposed by Jensen in [6], in which extensionality is weakened to apply
only to objects with elements (thus allowing many distinct objects without elements,
which are called atoms orurelements—thus the U) has exactly the same comprehen-
sion scheme (and so the same big sets) and is known to be consistent relative to fa-
miliar set theories. Moreover, it is also consistent with infinity and choice.

The disproof of choice inNF cannot be replicated in any subsystem ofNF
which is known to be consistent. A corollary of the failure of choice is that the “ax-
iom” of infinity is provable inNF ; thus a lower bound on the consistency strength of
NF (the best lower bound known) is that ofTT + Infinity. Infinity is not provable
in NFU, but it is provable in predicativeNF , which is known to be consistent (and
the proof of infinity inNFP makes essential use of the provability of Infinity inNF ).
The peculiarities ofNF revealed by Specker’s disproof of choice are profound, un-
like the peculiarities of having big sets like the universe that are shared withNFU .

3 Predicative and ‘mildly impredicative’ theories The simple theory of types and
NF are highly impredicative theories. That is, they allow the “definitions” of total-
ities by comprehension axioms to refer to totalities which include the set being “de-
fined”. For example, the comprehension axiom which asserts the existence of the set
of natural numbersN describesN as the intersection of all sets of cardinal num-
bers which contain 0 and are closed under addition of 1.N itself is a set of cardinal
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numbers which contains 0 and is closed under addition of 1; it seems that we have
“defined” N in terms of a class of sets to which it itself belongs.

For the record, we see no philosophical problem with the comprehension axiom
which provides us withN . Weagree with Russell that if it were really to be regarded
as a definition, it would be circular—the correct conclusion to draw is that compre-
hension axioms are not definitions!

Russell and Whitehead proposed that the paradoxes of set theory were due to im-
predicativity and proposed to recast their system ofPrincipia Mathematica to avoid
impredicativity. The original predicative type theory of Russell, called the ramified
theory of types, is quite complex; we will present a formalization of this system be-
low. A simpler predicative system is readily obtained by restricting the comprehen-
sion axioms ofTT , and the first aim of our paper is to show that this system is in fact
equivalent in a strong sense to the ramified theory of types; each system interprets the
other readily.

Wedefine a subtheoryTTP of TT in order to satisfy scruples about predicativ-
ity. The extensionality scheme ofTTP is the same as that ofTT . The comprehen-
sion scheme is restricted in a way which ensures that no object can be “defined” (pro-
vided by a comprehension axiom) when the comprehension axiom involves quantifi-
cation over the type to which the object belongs. An instance of the scheme “{x | ϕ}
exists” is excluded ifϕ includes a quantifier over the type to which{x | ϕ} itself would
belong (one higher than the type ofx) or any higher type. Further, an instance of
“{x | ϕ} exists” is excluded if any object of type higher than that of{x | ϕ} is men-
tioned. It is permitted forϕ to refer to objects of the same type as{x | ϕ}; for exam-
ple, the comprehension axiom “{x | x ∈ A ∧ x ∈ B} exists” which “defines”A ∩ B is
predicative and has parametersA andB at the same type asA ∩ B.

To motivate these restrictions intuitively, imagine that the types are created in
order. The definition of a typen object cannot involve quantifiers over typen or any
higher type, because the creation of typen is not yet complete (so we do not know
what might be true ofall type n objects) and the creation of still higher types has
not yet begun. The permission to use individual typen objects as parameters in the
definition of other typen objects can be understood as reflecting the fact that objects
are created in a certain order within the types; of course, no object of higher type can
be used as a parameter because no objects of higher type have yet been created.

Thus, the formal restriction on the comprehension scheme ofTTP is that a per-
mitted comprehension axiom “{x | ϕ} exists” is one in which the formulaϕ contains
no bound variable with type higher than the type ofx and no free variable (parameter)
with type higher than the successor of the type ofx.

The system of set theory obtained by suppressing the type system ofTTP in the
same way thatNF is obtained fromTT is calledNFP or “predicativeNF ”. Unlike
NF this system is known to be consistent and in fact quite weak.

The comprehension scheme ofNFP can be presented in terms of stratifications.

Definition 3.1 A stratificationσ of a formulaϕ is said to bepredicative relative to
a variable x if and only if it maps all free variables to values≤ σ(‘ x’ ) + 1 andall
bound variables to values≤ σ(‘ x’ ). A formulaϕ is said to bepredicatively stratified
relative to x if and only if ϕ has a predicative stratification relative tox.
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The instances of comprehension provided inTTP are the assertions “{x | ϕ} exists”
such thatϕ is predicatively stratified relative tox.

There is a less restrictive type theoryTTI which we have elsewhere described
as “mildly impredicative”. In this theory, we are permitted to “define” typen objects
using quantification over all of typen, but we are still not permitted to mention objects
of type higher thann in the definition of a typen object. The definition of the set
of natural numbers succeeds inTTI but fails inTTP (that is, the comprehension
axiom forN (in appropriate types) is acceptable inTTI but not inTTP ). There is
afragment ofNF obtained by dropping types from axioms ofTTI : this theoryNFI
has the extensionality axiom ofNF and all comprehension axioms “{x | ϕ} exists”
where there is a stratificationσ of ϕ such that the range ofσ includes no value greater
thanσ(‘ x’ ) + 1. We provide a suitable definition.

Definition 3.2 A stratificationσ of a formulaϕ is said to bemildly impredicative
relative to a variable x if and only if it maps all variables to values≤ σ(‘ x’ ) + 1.
A formulaϕ is said to bemildly impredicatively stratified relative to x if and only if
there is a mildly impredicative stratification ofϕ relative tox.

Then the comprehension scheme ofNFI provides for the existence of{x | ϕ} just in
caseϕ is mildly impredicatively stratified relative tox.

Denote the singleton operation byι: ιx = {x}. Let ιkx represent thek-fold it-
erated singleton ofx: for example,ι2x = {{x}}. (It is useful to note for the sequel
that we use the notationιk“ x for the set ofk-fold singletons of elements ofx.) For
any stratified formulaϕ, the set which we can informally describe as{ιkx | ϕ} is pro-
vided by an instance of stratified comprehension of the form{y | (∃x.“ y = ιkx”∧ϕ)};
the type ofy will be k higher than the type ofx, and if k is large enough the formula
(∃x.“ y = ιkx”∧ϕ) will be predicatively stratified relative toy, so the existence of the
set will be asserted byTTP . (Weassume that the reader can provide the formal defi-
nition of the sequence of formulas abbreviated “y = ιkx” i f he or she really wants it).
This is sufficient to show that the axiom of set union adjoined toTTP (or to TTI )
gives a theory equivalent toTT ; application of set unionk times to{ιkx | ϕ} yields
{x | ϕ}. For the same reason, adjoining the axiom of set union toNFP or NFI gives
a theory equivalent toNF .

Theorem 3.3 (Crabb́e) NFP (and so NFI ) proves the axiom of infinity.

Proof: One may define each concrete Frege natural number inNFP just as inNF ;
moreover, one may define the successor operation on Frege natural numbers just as
in NF . We give the explicit definitions.

Definition 3.4 0 is defined as{∅}, the set of all sets with no elements.

Definition 3.5 For any setA, A + 1 isdefined as{a ∪ {x} | a ∈ A ∧ x �∈ a}, the set
of all disjoint unions of elements ofA with singletons.

Observation 3.6 The sets 0 andA + 1 are provided by instances of predicative
stratified comprehension.

Definition 3.7 We call a setI inductive if and only if 0 ∈ I and (∀a.a ∈ I →
a + 1 ∈ I).
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Definition 3.8 Wesay that an objectn is anatural number if and only if it belongs
to all inductive sets. We may refer to the class of natural numbers asN , but we do
not assume thatN is a set.

Observation 3.9 The set of all inductive sets is predicatively defined (though this
is not important to us here); the set of all natural numbers isnot provided by the
scheme of predicative stratified comprehension (though it is provided by the scheme
of “mildly impredicative” stratified comprehension ofNFI ) and it turns out that there
are models ofNFP in which N is not a set.

Definition 3.10 A set is said to befinite if and only if it belongs to some natural
number. There is no presumption that the finite sets make up a set. A set is said to be
infinite if it is not finite. We refer to the assertion that the universal setV is infinite as
the “axiom of infinity”.

Wedefine a setU = {A | (∀a ∈ A.(∀b ⊆ a.(∃c.(∀d.d ∈ c ≡ (∃e.d ∈ e ∧ e ∈ b)))))};
informally, this is the set of all setsA such that all subsets of elementsa of A have
unions. We provide it in fully expanded form to allow the reader to check that pred-
icative stratified comprehension does provide this set in spite of the fact that the im-
predicative notion of set union is involved; the relative type of each variable in the
set definition is less than or equal to that ofA.

We show thatU is inductive. It is necessary to check that ifA ∈ U, a ∈ A, and
x �∈ a, then all subsets ofa ∪ {x} have unions. If such a subsetb does not containx,
it has a union because it is a subset ofa. If i t containsx, thenb − {x} has a union
because it is a subset ofa, andx ∪ ⋃

(b − {x}) exists and equals
⋃

b. Thus the setU
is inductive and thus contains all natural numbers.

If the universeV were finite, it would belong to some natural number, which
would in turn belong toU. It would follow from this that every subset ofV , andso
every set, would have a union, which implies that all consequences of fullNF , in-
cluding the assertion “V is infinite” would hold. This is a contradiction, soV must
be infinite.

Other forms of the axiom of infinity given in theNF literature, such as the as-
sertion that the empty set is not a natural number, can be proved. It is easy to see that
if ∅ belongs to all sets containing 0 and closed under successor, then so mustιV , the
singleton of the universe, because∅ itself andιV are the only sets with∅ as their suc-
cessor. But we have just shown thatιV cannot be a natural number, because no set
containingV can be a natural number. Thus the empty set cannot be a natural number
either. The proof is complete. �
In [8], Quine presented a definition of the ordered pair suitable for use inTT with
Infinity or NF which is “type level”: the pair is of the same type as its projections.
Note that this is not true of the Kuratowski pair:{{x}, {x, y}} is two types higher than
its projectionsx andy.

We describe Quine’s definition of the ordered pair. Define a mapσ as follows:
σ(n) = n + 1 for n ∈ N andσ(x) = x for x �∈ N . Defineσ1(A) asσ“ A for any
set A, and defineσ2(A) as (σ“ A) ∪ {0}. Then the Quine pair〈A, B〉 is defined as
(σ1“ A) ∪ (σ2“ B). Let 〈A, B〉− be the set of elements of〈A, B〉 which do not contain
0 and let〈A, B〉+ be the set of elements of〈A, B〉 which do contain 0. Defineσ3(A)
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asσ−1“ A for any setA. It isstraightforward to establish thatσ3“ (〈A, B〉−) = A and
σ3“ (〈A, B〉+) = B, so we can recover the projections from the pair.

Adapting this definition of the pair toTTP orNFP requires care. The difficulty
is that the class of natural numbers is not necessarily a set in the predicative theories,
so there is no reason to believe thatσ1, σ2, orσ3 are operations which take sets to sets.
The definition of the pair and its projections is otherwise predicatively acceptable.

A prerequisite for the modified definition is the notion of a cardinal which has
to be defined in terms of the usual Kuratowski pair at this point.

Definition 3.11 The cardinal of a set A, written |A|, is defined as the set{ι2B |
(∃ f. f is a bijection fromA to B)}, where the notion of bijection (and the notion of
function on which it depends) are defined in the natural way using the Kuratowski
pair. The appearance of the double singleton ofB as the generic element is due to
the fact that the type of the bijectionf witnessing the equinumerousness ofB andA
is two higher than the type ofB, and the type of an element of the set being defined
must be at least this high to satisfy predicativity restrictions.

It is demonstrable inTTP that cardinals with the same successor are the same car-
dinal (over an arbitrary type). We can then define the Quine pair inTTP or NFP
just as above, except that the mapσ will be the successor map on cardinals instead of
the successor map on natural numbers. Just as inTT , Infinity needs to hold for the
definition to succeed.

The type differential here is considerable: if typen satisfies Infinity (so the defi-
nition works), the type of any setA of typen objects isn + 1, the type of the cardinal-
ity |A| of A is n + 4, the type of the set of cardinals of sets of typen objects isn + 5,
and the type in which the pair is defined isn + 6. The pair is also definable on each
type aboven + 6 (all types above an infinite type are infinite; types below an infinite
type need not be (internally) infinite in predicative type theory).

Since a type-level pair is available inNFP , functions and relations can be de-
fined to be one type higher than the elements of their domains and ranges instead of
three types higher. One consequence of this is that the bizarre definition of cardinals
as sets of double singletons forced on us by predicativity restrictions can be replaced
with the usual one (|A| = {B | there is a bijection fromA ontoB}) once the type-level
pair is available.

It is interesting to observe that the definitions of equinumerousness using the Ku-
ratowski pair and the modified Quine pair do not coincide. The precise relationship
is that setsA andB have a bijection between them represented as a set of Kuratowski
pairs precisely ifι2“ A andι2“ B have a bijection between them represented as a set of
modified Quine pairs. In the predicative context, it is possible for the singleton im-
ages of two sets to have the same cardinality when the sets themselves have different
cardinalities.

Wepresent a proof of the consistency ofNFI (and thus ofNFP ). This proof is
not the same as the one in [1]; it is more closely related to the consistency proof for
NFU given by Jensen.

In preparation for this proof, we cite basic results of Specker (from [11]) which
we will not prove here.

Theorem 3.12 (Specker) NF (respectively, NFU , NFP ) is consistent if and only
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if TT (respectively, TTU , TTP ) with the ambiguity scheme is consistent.

Theorem 3.13 (Specker) NF (respectively, NFU , NFP ) is consistent if and only
if there is a model of TT (respectively, TTU , TTP ) which is isomorphic to its sub-
model obtained by relabeling each positive type n + 1 as type n.

Specker’s original results were forNF alone (the other theories had not yet been pro-
posed) but they adapt easily to the subtheories.

It is straightforward to construct a model ofTTI in which all infinite sets in
each type are the same size. We describe an inductive construction of such a model.
Let type 0 be any countably infinite set on which a notion of ordered pair is defined.
Suppose that types 0-n have been defined with the following properties: each type
is countably infinite and supports a type level ordered pair, and each typei + 1 con-
tains a bijection between typei and the set ofi-fold singletons of type 0 objects. We
provisionally let typen + 1 be the true power set of typen. We define the pair in
typen + 1 as follows: let x andy be two distinct elements of typen and let(a, b) be
{(a′, x) | a′ ∈ a} ∪ {(b′, y) | b′ ∈ b} for any typen + 1 objectsa andb. The problem
we have is that the provisional typen + 1 is too large (it is uncountably infinite). The
solution is to replace the provisional model of types 0 –n + 1 by a Skolem hull of
the theory of the provisional model with equality, membership, and pair projections
in each type as predicates, and with all the elements of types 0 –n as constants. This
will be a countably infinite structure in which types 0 –n are unchanged and the new
typen + 1 satisfies the desired conditions.

In such a model, any set of a given type which is externally seen to be infinite has
the same cardinality in the internal sense of the model as any other such set; all exter-
nally infinite sets of a given type are externally countably infinite, so the provisional
version of the next higher type contains maps witnessing their equinumerousness, and
the formation of the Skolem hull preserves the existence of such maps, witnessing the
fact that the sets have the same cardinality internally.

It is thus possible to define a “membership” relation of objects of typei in objects
of any typej > i (not just j = i + 1). This relation∈i j is defined as follows: for each
j > i choose a bijectionfij from ι j−i−1“ Vi (whereVi is notation for typei as a set) to
V j−1, and definex ∈i j y as fij(ι

j−i−1x) ∈ y. It isstraightforward to establish that any
increasing sequence of types in the given model is a model ofTTI when appropriate
∈i j’s are used as membership relations between successive types in the sequence.

With each finite set of sentences� of the language ofTT involving types 0 to
n − 1, we associate a partition of then-element sets of types of our model. The par-
tition will have no more than 2|�| compartments: it will be determined by the truth
values of the sentences of� when the types 0 ton − 1 are replaced by the elements of
then-element set in increasing order, with appropriate replacements of occurrences
of ∈ with ∈i j’s.

By Ramsey’s theorem, there is an infinite sequence of types which is typically
ambiguous for the partition associated with� and so satisfies typical ambiguity for
the formulas in�. By compactness, the scheme of typical ambiguity can consistently
be adjoined toTTI . By Specker’s theorems cited above,NFI is equiconsistent with
TTI with the ambiguity scheme. SinceNFP is a fragment ofNFI , NFP is also
consistent.
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If we work in a nonstandard model of set theory with an external automorphism
j such thatj(N) > N for a (nonstandard) natural numberN, wecan build an explicit
model ofNFI . The infinite sequence of types{ ji(N)}i∈N (a proper class in our non-
standard model of set theory) in the model ofTTI constructed above, with the mem-
bership relations∈ ji(N) ji+1(N) between successive types, gives a model ofTTI with
an isomorphism between itself and its submodel obtained by relabeling each positive
typen + 1 as typen. A model ofNFI is obtained as follows: use typeN as the do-
main of the model and definex ∈N FI y asx ∈N j(N) j(y).

4 The ramified theory of types,TTP andNFP Weintroduce a formalization (with
variants) of the ramified theory of types of the second edition of Russell and White-
head’sPrincipia Mathematica.

The guiding idea of the ramified theory of types is that no object may be defined
using quantification over a totality to which the object itself belongs. The variations in
our treatment stem from whether one wishes to include types of relations or just types
of sets. We will start with a formalization which admits just types for sets (following
Crabb́e in [2]) and indicate how it could be adapted to handle types of relations (or
even functions).

A type in the scheme we adopt following Crabbé is afinite strictly increasing
sequence of natural numbers whose first term is 0. The sequence whose first and only
term is 0, which we will denote by(0), will be the base type, corresponding to type
0 in TT . We use the notations− for the sequence obtained by dropping the last term
of the sequences (whens �= (0)). We use the notation max(s) for the last term in the
(increasing) sequences.

The elements of an object of types will be objects of types−. The extensionality
axiom of the ramified theory of types asserts as usual that objects of any type other
than the base type are equal if and only if they have the same elements. The compre-
hension scheme provides for the existence of{xs− | ϕ}s, the set of types of all x of type
s− such thatϕ, just in caseϕ has no parameter of a typet such that max(t) > max(s)
and contains no bound variable of a typet such that max(t) ≥ max(s). This criterion
should remind one of the criteria for comprehension inTTP .

This scheme has the effect that any set can be defined by quantification only over
types represented by sequences with a smaller maximum element and using parame-
ters of types represented by sequences with no larger maximum element, which has
the effect of enforcing predicativity. It appears to be more expressive thanTTP be-
cause it allows one to define subsets of any given type using quantifiers over any other
type, by providing each type with multiple power set types. Metaphorically, one can
think of the base type(0) as being “created” first, then the sole typet with max(t) = 1,
then the two types with max(t) = 2, and at thenth stage all typest with max(t) = n
would be created:(0) is the type of individuals created first;(01) is the type of sets
of individuals created at the second stage;(012) is the type of sets of type(01) ob-
jects (sets of sets of individuals) created at the third stage, while(02) is a new type
of sets of individuals, also created at the third stage; at the next stage,(03) will be
yet another type inhabited by sets of individuals, while(013) and(023) will be two
subtly different new types of sets of sets of individuals, inhabitants of which will have
elements of types(01) and(02), respectively. The details of the restrictions on com-
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prehension are motivated in the same way as inTTP : in the definition of a set of a
certain type, quantification over types not yet created is obviously not possible; pa-
rameters of types created at the same stage are permitted because we do not imagine
that all objects in any given type are created simultaneously. Each type has a new
“power set” created at each subsequent stage.

This already “ramified” picture can be further ramified by allowing relations of
arbitrary arity or even functions. The types could then be coded as nonempty trees
labeled with natural numbers and with 0 at all leaves, rather than sequences of positive
natural numbers: the code for ann-ary relation type would haven ordered immediate
subtrees, theith ordered subtree being the type of theith argument to be supplied to
the relation. The code for a function type would have an additional immediate subtree
for the type of its output. The trees would be “increasing” in the sense that the natural
number labeling the root of a tree would be larger than the natural numbers labeling
the roots of each child tree. The extensionality and comprehension schemes would
be essentially the same, with the value of the function coding a type at the root of its
domain playing the role of max(s) above.

The ramified type system, even when augmented with relations and functions,
is mutually interpretable with the much simpler predicative type theoryTTP . An
immediate corollary is that the ramified theory of types (with the assumption that the
base type is infinite) is interpretable in the very simple set theoryNFP . Of course,
there are some philosophical questions about the status ofNFP , which is not in any
obvious sense a predicative theory.

Wewill now establish the mutual interpretability ofTTP and the set version of
ramified type theory. It is straightforward to see that ramified type theory interprets
TTP . In fact, there are many interpretations: any sequenceti of types in ramified type
theory with the property thatti = t−i+1 for each indexi provides a direct interpretation
of TTP , using the typeti as typei.

The subtler thing is to see that the apparently weaker theoryTTP actually has
the full expressive power of ramified type theory. We describe the interpretation,
then verify that it works. The base type(0) of ramified type theory is coded by type
0. Each typet of ramified type theory is coded by a subset of the type max(t) of
TTP (a set of type max(t) + 1). This might appear to create a problem with mem-
bership, as max(s−) is not necessarily the predecessor of max(s); this is handled by
the stipulation that membership of elements of types− in elements of types is coded
by membership of suitably iterated singletons of the elements of the interpreted type
max(s−) in objects of the interpreted type max(s). If type s− is coded by a subset
A of type max(s−), type s is coded byP ιmax(s)−max(s−)−1“ A, the set of all sets of
(max(s) − max(s−) − 1)-fold iterated singletons of elements ofA. This is enough
to determine the representation of each type of the ramified theory precisely.

In the case of the more complex theories with function and relation types, the sin-
gleton operation will need to be applied a different number of times to each argument
of the function or relation when the arguments are of different types: for example, a
stage 4 type inhabited by relations between a stage 1 type and a stage 2 type will be
represented by a set of type 4 objects whose elements are pairs with first projection
a double singleton of a type 1 object and second projection a singleton of a type 2
object. The theories with relation and function types can only be handled in the way
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we describe if a type-level ordered pair is available; otherwise the type of ann-tuple
relative to its arguments will depend onn, making a uniform representation impossi-
ble. It is necessary in this case to add the type-level ordered pair as a primitive notion
to TTP . The pair is only definable in general models ofTTP in types 6 and above;
truncating a model ofTTP at type 6 gives a model ofTTP in which a type level pair
is available at every type, so we can see that we do not essentially strengthenTTP
by adding the type-level pair as a primitive.

The verification of extensionality in this interpretation is trivial. The verifica-
tion of comprehension is hardly less trivial when it is recognized that the characteris-
tic max(s) of typess which controls the predicativity restriction in the ramified the-
ory is mapped precisely to the type inTTP , and the restrictions on these parameters
in comprehension in the two theories are the same: a permitted comprehension ax-
iom in the ramified theory will map to a permitted comprehension axiom inTTP . A
quantifier over a types of ramified type theory will be interpreted by a quantifier over
the type max(s) of TTP bounded by a set of type max(s) + 1, which will become
an additional parameter of type max(s) + 1 in the interpretation. A comprehension
axiom{x | ϕ} of the ramified type theory introducing a set of types satisfies the con-
dition that each bound variable will be of a typet with max(t) < max(s); each bound
variable in the interpreted version is thus of type max(t) < max(s), bounded by a pa-
rameter of type max(t) + 1 ≤ max(s). The interpreted version of the comprehension
axiom introduces the set of iterated singletons in type max(s) − 1 of objects of type
max(s−) which satisfy a condition involving bound variables of types< max(s) and
parameters of types≤ max(s) (the interpreted versions of the original parameters plus
parameters introduced to bound interpreted quantifiers); this will be a comprehension
axiom ofTTP .

So we have completed the demonstration of the following.

Theorem 4.1 TTP and ramified type theory are mutually interpretable; ramified
type theory is interpretable in NFP .

SinceTTP interprets ramified type theory, it follows immediately thatNFP inter-
prets ramified type theory.NFP is a very appealing theory; it is not very strong
(Crabb́e showed that it is actually weaker than Peano Arithmetic) but it is very ex-
pressive, and it is strong enough to do a good deal of elementary mathematics. It
combines Russell’s concerns about predicativity with Quine’s solution to the inele-
gance of types and the “hall of mirrors” effect of typical ambiguity. In addition, there
is the surprise thatNFP actually proves infinity. But there is the potential philosoph-
ical difficulty thatNFP (in spite of its etymology) may not really be a predicative
theory; sets can belong to themselves in this theory after all. We do not rule out the
possibility that there is a justification forNFP on predicative grounds, but we haven’t
yet produced one ourselves.

5 NFI has the same strength asPA2 NFI is evidently stronger thanNFP . In
NFI , the set of natural numbers exists, and in factNFI interpretsPA2 (second-order
arithmetic) in the natural way; the theory of natural numbers and sets of natural num-
bers defined in the natural way inNFI provides a direct interpretation ofPA2. Com-
prehension axioms defining sets of natural numbers inNFI may freely employ quan-
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tifiers over natural numbers (one type lower than the type of the set being defined) and
over sets of natural numbers (at the same type as the set being defined); this is all that
is needed to interpret comprehension axioms ofPA2.

The remainder of this section is devoted to the proof of the much less obvious
fact that the consistency ofPA2 implies the consistency ofNFI : the two systems
have exactly the same consistency strength.

Wefirst define quantifier classes of formulas in a standard way. In the following
discussion, all formulas are assumed to be presented in prenex form with all quanti-
fiers over sets of natural numbers preceding all quantifiers over natural numbers. (A
quantifier over natural numbers appearing before a quantifier over classes could be
converted to a quantifier over one-element sets of natural numbers; it can also be ab-
sorbed into a following quantifier over sets of natural numbers by considering the fact
that a function from a finite list of natural numbers to a set of natural numbers can be
coded as a set of natural numbers).

A �0 or�0 formula is a formula with no quantifiers over sets of natural numbers
at all (the two terms are synonymous). A�n+1 formula results when one or more
existential quantifiers are prefixed to a�n formula; a�n+1 formula results when one
or more universal quantifiers are prefixed to a�n formula. It is useful to note that any
finite tuple of sets of natural numbers can be coded by a single set of natural numbers,
so one can think of a�n formula as having a single existential quantifier leading a
string ofn alternating quantifiers over sets of natural numbers, and a�n formula as
having a single universal quantifier leading a string ofn alternating quantifiers over
sets of natural numbers.

Satisfaction of formulas and truth of sentences can be defined in the usual way
in PA2 (for restricted classes of sentences, of course). It is not hard to show that sat-
isfaction for formulas without quantifiers over sets (�0 sentences) is�1. The reader
may consult Rogers [9] for a proof of the fact that satisfaction of�n+1 formulas can
be represented by a�n+1 formula, which is what we require for this development. It
is, of course, impossible (by Tarski’s well-known theorem on the definability of truth)
for PA2 to represent satisfaction of formulas ofPA2 in general. For one who is fa-
miliar with the details of the proof of Tarski’s theorem, it might be useful to point out
that the fact that the class of�n+1 sentences can contain a representation of truth for
sentences of that same class is not problematic because this class is not closed under
negation.

We represent byTTI k the fragment ofTTI axiomatized by those axioms of
TTI which are�i sentences (or which have prenex forms which are�i sentences)
for somei ≤ k. We show thatTTI k is interpretable inPA2. We do this by showing
thatTTI n

k , then-type fragment ofTTI k, is interpretable for each natural numbern
in a uniform manner. ClearlyTTI 1

k is interpretable inPA2; all that is required is a
domain of elements with the equality relation on them; we stipulate further that we
will use a countably infinite domain as our type 0.

Suppose that we have modeledTTI n+1
k (whose highest type is typen); each of

the types 0 –n will be a countably infinite structure whose elements are natural num-
bers. We show how to modelTTI n+2

k . Weprovisionally take our typen + 1 to con-
sist of the subsets of the typen of our model; this must be provisional because this
makes typen + 1 too large with elements of the wrong sort. We can define the�k
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theory of this structure using the definition of truth for�k sentences. We then enrich
the language ofTTI n+2

k with Hilbert symbols (so that we can represent witnesses to
existential statements) and with all elements of types 0 –n as constants. We define a
maximal consistent extension of the�k theory of our provisional model of types 0 –
n + 1 with the enriched language including Hilbert symbols; since our language is
countable, we can do this without an appeal to the axiom of choice. From this max-
imal consistent extension, we can extract a countably infinite term model of types
0 –n + 1, satisfyingTTI n+2

k . This construction can be described in a uniform man-
ner (using a higher quantifier class than�k!); so we can construct a model ofTTI k

in PA2. Wecan then follow the proof of consistency ofNFI above; the infinite Ram-
sey theorem is provable inPA2, so wefind thatPA2 proves the consistency ofNFI k

for each concretek. This means that we can actually build models ofNFI k in PA2

(as, for instance, by the method of taking maximal consistent extensions of theories
to build a term model).

SincePA2 proves the consistency of eachNFI k, it must be the case that the con-
sistency ofPA2 implies the consistency ofNFI (which is the union of all theNFI ks).
This also demonstrates thatNFI cannot be finitely axiomatized, as otherwiseNFI
would be equivalent to someNFI K andPA2 would prove the consistency of this
NFI K , so ofNFI , so ofPA2 itself, which is impossible by G̈odel’s second incom-
pleteness theorem. It is known thatNF andNFP can be finitely axiomatized. The
standard reference for a finite axiomatization ofNF is Hailperin [3] but the axioma-
tization given there cannot easily be adapted toNFP . The finite axiomatization for
NFU given in Holmes [5] can be adapted toNFP , if one adds strong extensionality
and drops the axiom of set union.

So we have completed the proof of the following.

Theorem 5.1 PA2 is equiconsistent with NFI .

6 Conclusions and questions Webelieve that these results basically settle the sta-
tus of the theoryNFI . Crabb́eshowed that its consistency strength was less than that
of third-order arithmetic; here we show that it is exactly that of second-order arith-
metic. The apparent ability to apply a “power set” construction repeatedly to an infi-
nite set inNFI is in some sense illusory:NFI can be encoded in a system in which
the power set operation is applied to an infinite set just once. But the apparent ability
to iterate the power set construction givesNFI expressive power greater than that of
second-order arithmetic in practical terms: inNFI we can define the rational num-
bers just as we would inNF or ZFC , then define the reals as Dedekind cuts in the
rationals, and go on to represent such things as functions from the reals to the reals as
well. The analysis one is then able to do is predicative; the least upper bound prop-
erty does not hold in general for these “reals”, but the expressive power of a full set
theory is convenient nonetheless.

Wehave shown elsewhere (e.g., in Holmes [4]) thatNFI admits consistent ex-
tensions of arbitrarily high consistency strength, including ones in which arithmetic
and analysis are standard. Some questions remain aboutNFP . We are interested in
finding out its exact consistency strength and exploring the extent to which elemen-
tary mathematical constructions can be carried out inNFP . Even more thanNFI ,
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NFP appeals to us as combining extreme weakness in terms of consistency strength
with the full expressive power of set theory. We are also interested in the (philosoph-
ical rather than mathematical) question of whetherNFP can really be motivated on a
purely predicative basis: the fact that it seems to be no stronger thanTTP + Infinity
suggests that it may be possible to do this.
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[2] Crabb́e, M., “Ramification et pŕedicativit́e,” Logique et Analyse, vol. 84 (1978),
pp. 399–419.Zbl 0449.03009 MR 81e:03006 1, 4

[3] Hailperin, T., “A set of axioms for logic,”The Journal of Symbolic Logic, vol. 9 (1944),
pp. 1–19.Zbl 0060.02201 MR 5:197a 5

[4] Holmes, M. R., “The equivalence of NF-style set theories with ‘tangled’ type theories;
the construction of omega-models of predicative NF (and more),”The Journal of Sym-
bolic Logic, vol. 60 (1995), pp. 178–89.Zbl 0819.03044 6

[5] Holmes, M. R.,Elementary Set Theory with a Universal Set, Academia, Louvain-la-
Neuve, 1998.Zbl 0959.03001 MR 2001c:03089 5

[6] Jensen, R. B., “On the consistency of a slight(?) modification of Quine’s NF,”Synthese,
vol. 19 (1969), pp. 250–63.Zbl 0202.01001 2

[7] Quine, W. V., “New foundations for mathematical logic,”American Mathematical
Monthly, vol. 44 (1937), pp. 70–80.Zbl 0016.19301 2

[8] Quine, W. V., “On ordered pairs,”The Journal of Symbolic Logic, vol. 10 (1945),
pp. 95–96.Zbl 0060.12414 MR 7:185c 3

[9] Rogers, H.,The Theory of Recursive Functions and Effective Computability, The MIT
Press, Cambridge, 1988. See Theorem XIII, Corollary XIIIa, Corollary XIV, in Section
16.2, pp. 386–90.5

[10] Specker, E. P., “The axiom of choice in Quine’s ‘New foundations for mathematical
logic’,” Proceedings of the National Academy of Sciences of the USA, vol. 39 (1953),
pp. 972–75.Zbl 0051.03705 MR 15:493b 2

[11] Specker, E. P., “Typical ambiguity,” pp. 116–124 inLogic, Methodology and Philosophy
of Science, edited by E. Nagel, Stanford University Press, Palo Alto, 1962.
Zbl 0156.02101 MR 28:1129 3

Department of Mathematics
Boise State University
1910 University Drive
Boise ID 83725
email: holmes@math.idbsu.edu

http://www.emis.de/cgi-bin/MATH-item?0487.03024
http://www.ams.org/mathscinet-getitem?mr=83d:03061
http://www.emis.de/cgi-bin/MATH-item?0449.03009
http://www.ams.org/mathscinet-getitem?mr=81e:03006
http://www.emis.de/cgi-bin/MATH-item?0060.02201
http://www.ams.org/mathscinet-getitem?mr=5:197a
http://www.emis.de/cgi-bin/MATH-item?0819.03044
http://www.emis.de/cgi-bin/MATH-item?0959.03001
http://www.ams.org/mathscinet-getitem?mr=2001c:03089
http://www.emis.de/cgi-bin/MATH-item?0202.01001
http://www.emis.de/cgi-bin/MATH-item?0016.19301
http://www.emis.de/cgi-bin/MATH-item?0060.12414
http://www.ams.org/mathscinet-getitem?mr=7:185c
http://www.emis.de/cgi-bin/MATH-item?0051.03705
http://www.ams.org/mathscinet-getitem?mr=15:493b
http://www.emis.de/cgi-bin/MATH-item?0156.02101
http://www.ams.org/mathscinet-getitem?mr=28:1129
mailto: holmes@math.idbsu.edu

