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1 Introduction to NFU and NF

This section provides a brief introduction to the theories NFU and NF . NF was
proposed by W. V. O. Quine in [10]. NFU was proposed as a variant of NF by
R. B. Jensen in [9].

These theories are based on the simple theory of types of Russell, as sim-
plified by Ramsey. This is a sorted first-order theory with sorts indexed by the
natural numbers. The intended semantics is that type 0 should be a type of
individuals (about whose structure we make no assumptions), type 1 a type of
sets of individuals, type 2 a type of sets of sets of individuals, and in general type
n+ 1 will consist of sets of type n individuals. The primitive predicates of the
theory of types are equality and membership. Atomic sentences are well-formed
when and only when they are typed thus: xn = yn; xn ∈ yn+1.

The axioms of the theory of types are extensionality (each type n+ 1 object
is determined exactly by its elements) and comprehension (for any formula φ,
{xn | φ}n+1 exists). Axioms of infinity and choice may be added.

Russell and others (including Quine, of course) observed that the theory
of types 0, 1, 2 . . . looks exactly like the theory of types 1, 2, 3 . . .. Quine was
mad enough to propose (contrary to sensible intuition) that the reason that the
theories look the same is that the types are in fact all one and the same type.
The resulting theory is called “New Foundations” (NF ) and is a one-sorted first
order theory with the following axioms:

Extensionality: Objects with the same elements are the same, i.e., A = B ≡
(∀x.x ∈ A ≡ x ∈ B).

Stratified Comprehension: For any formula φ such that an assignment of
types to its variables can be made which makes sense in the theory of types
(such formulas are said to be “stratified”) {x | φ} exists, i.e., (∃A.(∀x.x ∈
A ≡ φ)) (where A is not free in φ).

It is traditional to rephrase the definition of stratification in such a way that
no reference to the theory of types is required. Such a definition follows below.
It is also possible to replace the axiom scheme of stratified comprehension with
a finite set of instances of the scheme, which also has the effect of eliminating
the need to refer to types (the original reference for this is [4]).
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Definition: Let φ be a formula in the language of NF . A function σ from the
set of variables (considered as syntactical items) to the natural numbers
(or, equivalently to the integers) is said to be a stratification of φ if for
each atomic subformula pα = βq of φ we have σ(α) = σ(β) and for each
atomic subformula pα ∈ βq of φ we have σ(α) + 1 = σ(β). (Thanks to the
referee for pointing out that Quine’s quasi-quotes ([12]) make it easier to
express this!)

Definition: Let φ be a formula in the language of NF . φ will be said to be
stratified iff there is a stratification of φ. An effective algorithm for deter-
mining whether a formula is stratified is easily developed.

Stratified Comprehension (restated): For any stratified formula φ,
(∃A.(∀x.x ∈ A ≡ φ)) (where A is not free in φ).

It is worth giving an indication of how stratification is handled in a richer
language (we really do not conduct the business of set theory strictly in the
first-order language with equality and membership!) Term constructions can be
handled formally by adding the definite description operator (ιx.φ), denoting the
unique x such that φ if there is such an object and we care not what otherwise.
The definition of stratification would be widened so that a stratification function
would assign natural number (or integer) values to every term, not just to
variables, with the additional constraint that the value assigned to (ιx.φ) would
be the same as the value assigned to x. It is straightforward to verify that the
stratification one gets for a formula involving (ιx.φ) will be the same as the
stratification of the formula obtained by eliminating occurrences of the term
(ιx.φ) in the usual way. It is also worth observing that it is not necessary
to require that variables free in an instance of comprehension be typed, and
of course many superficial problems with stratification can be eliminated by
renaming bound variables.

NF is not known to be consistent. It is known to disprove the axiom of
choice (Specker showed this in 1953 ([14])), and thus proves the “axiom” of
infinity as a theorem (if the universe were finite, it could be well-ordered).

In his 1969 paper [9], R. B. Jensen proposed weakening the axiom of ex-
tensionality to allow atoms or urelements. The resulting theory is called NFU .
NFU does not prove Infinity or disprove Choice: Jensen showed that NFU +
Infinity + Choice is consistent (it has the same strength as the theory of types
with infinity; NF is not known to be any stronger than this).

NFU can formalized by modifying extensionality to take the form

Weak Extensionality: z ∈ A→ (A = B ≡ (∀x.x ∈ A ≡ x ∈ B))

which asserts that objects with elements are equal iff they have the same ele-
ments. Another common way to formalize NFU is to adjoin a sethood predicate,
stipulating that anything with an element is a set, that sets with the same ele-
ments are equal, and that the objects provided by the axiom scheme of stratified
comprehension are sets. It is equivalent to provide a constant ∅ representing
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the empty set (as opposed to the other objects with no elements): the sethood
predicate can be defined thus: set(x) ≡def (∃y.y ∈ x) ∨ x = ∅.

It is important to notice that the comprehension scheme of NFU is the same
as that of NF .

There are other fragments of NF known to be consistent, but they are not
relevant here.

2 Mathematics in NF(U)

NF is noted (notorious?) for allowing large sets. NFU provides the same large
sets, because it has the same comprehension scheme. For example, the universe
V = {x | x = x} is provided by an instance of stratified comprehension. But
notice that the Russell class R = {x | x 6∈ x} is not provided by stratified
comprehension, because there is no consistent way to type x in the formula
x 6∈ x. This is not because x ∈ x is ill-formed, as it would be in the theory
of types: V ∈ V , for example, is both well-formed and true (the universe is an
element of the universe).

2.1 Definitions of familiar concepts in NF(U); Cantor’s
theorem

It is important to note that we use a type-level ordered pair ((x, y) has the same
type as x or y for stratification purposes: strictly speaking, we introduce the
relations π1 and π2 which a pair has to its projections, with a suitable axiom
ensuring that they really are projection relations and with the same stratification
requirements as equality, and then the term (x, y) defined as (ιz.zπ1x ∧ zπ2y)
can be seen to have the same value under any stratification as x or y). The
usual definition ((x, y) defined as {{x}, {x, y}}) gives a pair two types higher
than its projections. An important advantage of using a type-level ordered pair
is that a function is one type higher than its arguments and values, rather than
three types higher. A type-level ordered pair is definable in NF (see [11]) and
can be proved to exist in NFU + Infinity + Choice.

Cardinal numbers are defined as equivalence classes of sets under the usual
relationship of equinumerousness. So, for example, 1 is the set of all one-element
sets, 3 is the set of all 3 element sets, and ℵ0 is the set of all countably infinite
sets. These very large collections are proper classes in the usual set theory, but
they are provided by instances of stratified comprehension without difficulty.
Ordinal numbers, similarly, are defined as equivalence classes of well-orderings
under similarity.

Cantor’s theorem, which in ZFC asserts that |A| < |P(A)|, takes a different
form in NF . Note that in type theory |A| < |P(A)| is not even a well-formed
assertion (|P(A)| is one type higher than |A|). The theorem one can prove in
type theory is |P1(A)| < |P(A)|, where P1(A) is the set of one-element subsets
of A. This is also the theorem one can prove in NF(U). Cantor’s paradox
arises from applying Cantor’s theorem to the cardinality of the universal set.
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In NF(U), the result we obtain is |P1(V )| < |P(V )|: the cardinality of the set
of all singletons is less than the cardinality of the universe. While this is not
as bad as the paradoxical |V | < |P(V )|, it is still counterintuitive (after all, we
can “see” the bijection (x 7→ {x})); but it is also obvious that the definition of
(x 7→ {x}) = {(x, y) | y = {x}} is unstratified.

2.2 Strongly cantorian sets and subversion of stratifica-
tion

The form of Cantor’s theorem motivates some definitions important in our tech-
nical development.

Definition: A set which satisfies the condition |A| = |P1(A)| is said to be
cantorian.

A set is cantorian just in case there is a bijection between the set and the set of
its one-element subsets. A cantorian set will satisfy the “naive” form of Cantor’s
theorem. The condition we are interested in here is the even stronger condition
that the restriction of the bijection (x 7→ {x}) to A is a set: not only are A and
P1(A) the same size, but this fact is witnessed by the obvious map.

Definition: A set A is said to be strongly cantorian, which we abbreviate s.c.,
iff the restriction of the bijection (x 7→ {x}) to A is a set.

Suppose that A is a strongly cantorian set, φ is a formula, and a is a variable
restricted to A in the formula φ. Let k be the restriction of the singleton map
to A. Let ψ be a stratified subformula of φ. We can raise the type of a in ψ by
one by replacing ψ with the equivalent formula (∃bc.ψ[b/a] ∧ b ∈ c ∧ (a, c) ∈ k),
in which b can be assigned the original type of a and the only occurrence of a is
assigned a type one higher. We can lower the type of a in ψ by replacing ψ with
the equivalent formula (∃bc.ψ[b/a]∧(b, c) ∈ k∧a ∈ c). (In both of these contexts,
ψ[b/a] is the result of substituting b for a in ψ). A less formal way of putting this
is that any reference to a in the formula ψ can be replaced with a reference to the
element of k(a), and such a replacement raises the type of the occurrence of a
by one. Similarly, a reference to a can be replaced by a reference to k−1({a}), in
which the type of a is lowered by one. In this way, the types of all occurrences
of a in the original formula φ can be adjusted to achieve stratification. In
other words, stratification restrictions can be subverted for variables restricted
to strongly cantorian sets. This will be vital in our development of forcing in
NFU .

2.3 The axiom of counting

Rosser proposed the following axiom (for NF ) which Orey showed essentially
strengthens NF if NF is consistent, and which Jensen showed to be consistent
with NFU .
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Rosser’s Axiom of Counting: {1, . . . , n} has n elements.

This axiom is equivalent to any of the following statements:

1. All finite sets are s.c.

2. The set of natural numbers is s.c.

3. There is an infinite s.c. set.

For proofs see [3], p. 30-31.
The (proper) class of s.c. sets is closed under power set, union, cartesian

product, subsets, etc., so many familiar mathematical structures become s.c.
once the set of natural numbers is taken to be s.c.

3 Forcing in NFU

3.1 Prehistory of forcing in NFU

The set of isomorphism types of well-founded extensional relations with “top”
elements can be interpreted as the set of “pictures” of sets of a Zermelo-style
set theory, and the membership relation suggested by this interpretation is a set
relation. This was fully developed by Hinnion in [5]; it is also described in [7],
pp. 165-177.

One can do forcing in NFU by exploiting this fact: build isomorphism types
of “Boolean-valued” well-founded extensional relations and emulate the usual
development of Boolean-valued models. There is a technical trick which allows
one to recover a model of NFU based on the Boolean-valued model of an initial
segment of the cumulative hierarchy that one obtains, as long as the Boolean
algebra used is s.c. (this is basically the same as the method of interpreting
NFU in the set of isomorphism types of well-founded extensional relations with
“top” element described in [7], p 176-177; the Boolean algebra needs to be s.c.
in order for the definitions of equality and membership in the forcing model to
be stratified, much as is the case in the construction given below).

This approach creates lots of new urelements (this is evident just from con-
sideration of the “two-valued” version of the construction), so it cannot be used
to prove independence results from NF : if one starts with a model of NF and
a Boolean algebra, one will obtain a Boolean-valued model of NFU with many
urelements (even if the Boolean algebra is the trivial one with two elements!)

We give a brief description of what happens in the two-valued construction.
One obtains “pictures” of ranks Vα1 ⊂ Vα2 of the cumulative hierarchy which are
externally isomorphic (there is an isomorphism between them, but it is a proper
class in NFU ). Vα1

and Vα2
are very “big” ranks, and the isomorphism between

them is induced by taking images of elements of Vα2
under the singleton map in

a suitable sense to get elements of the “smaller” rank Vα1
. One can then exploit

the fact that every set in Vα1+1 is an element of Vα2 and thus can be coded
into Vα1 using the external isomorphism. But α2 is necessarily much larger
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than α1 +1 (from the internal standpoint): the elements of Vα1
that correspond

to sets in Vα1+1 in this way are a small initial segment of Vα1
, because Vα1+1

is a small initial segment of Vα2
, and the rest of the elements of Vα1

must be
interpreted as urelements. If one has a more complex Boolean algebra, there
are additional considerations which generate even more urelements.

There is also a philosophical objection: this approach allows one to do inde-
pendence proofs in NFU only by constructing an interpretation of some frag-
ment of ZFC in NFU and emulating the familiar development of independence
proofs in that context. It is certainly not an advertisement for NFU as an
independent approach to set theory!

3.2 A natural forcing construction in NFU

We now describe a technique of forcing natural for NFU . It will really be a
development of Boolean-valued models, as the discussion above might already
have suggested.

Let ≤ be a strongly cantorian partial order with domain P (P will also be
s.c.) We will indulge ourselves by stipulating that when p ≤ q, the condition
q represents a state with more information (this is the reverse of the usual
convention).

We are interested in a certain collection RO(P ) of subsets of P , which can
be thought of as representing “truth values”. The elements of RO(P ) are those
subsets A of P which satisfy:

1. if p ∈ A and p ≤ q then q ∈ A

2. if p satisfies the condition (∀q ≥ p.(∃r ≥ q.r ∈ A)) (the set of r stronger
than p which are in A is dense) then p ∈ A.

These sets are the “regular open” sets of a certain topology. Because NFU
does not satisfy the axiom scheme of separation found in familiar set theories,
it is possible that P may have subclasses which are not sets. Subclasses of P
which are not sets but which do otherwise satisfy the conditions for membership
in RO(P ) will be referred to as “regular open” classes.

We insert a definition and an observation which will be useful below.

Definition: If A ∈ RO(P ), we define A⊥ as {p ∈ P | (∀q ≥ p.q 6∈ A)}.

Observation: For any element A ∈ RO(P ), it is the case that A⊥ ∈ RO(P ).
For any A ⊆ RO(P ), it is the case that

⋂
A ∈ RO(P ). This is even true

(in a sense) if A is a proper class: in this case
⋂
A may not be eligible

for membership in RO(P ), because it may not be a set, but it will still be
a “regular open” class. Note that if A is a subclass of P , the subclass
A⊥ = {p ∈ P | (∀q ≥ p.q 6∈ A)} will also be “regular open”, though it
may fail to be a set.

We now set out to interpret all sets in our model of NFU as “names”. First,
we need a way to interpret any set as a function V → RO(P ): for any sets A
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and x, define A[x] as the unique element v of RO(P ) such that (x, v) ∈ A, or as
∅ if there is no such uniquely determined v. Observe that ∅ ∈ RO(P ). Note that
the relative type of x in A[x] is one lower than the type of A (this depends on
the use of a type-level ordered pair).

Intuitively, we would like to say, for any condition p, that p forces x ∈ A
just in case p ∈ A[x]. This will not work – it will need to be adjusted a bit, but
it is the basis of our development.

3.3 Defining equality

We use the intuitive motivation just given to formulate our definition of equality
in the forcing interpretation:

We say that p ` A = B just in case (∀q ≥ p.(∀x.q ∈ A[x] ≡ q ∈ B[x])).
A little reflection will reveal the problem we now face. The criterion of

identity on “elements” x in this definition of equality is the identity criterion of
the underlying model of NFU , not the new identity criterion we are trying to
define.

The standard approach would be to define equality by induction on mem-
bership, but definitions by induction on membership do not work in NF(U):
they are horribly unstratified (and the membership relation is not well-founded,
anyway).

Instead, we use an idea introduced by Marcel Crabbé in his proof (in [2]) that
NF without any extensionality interprets NFU (weak extensional collapse): we
will reinterpret all those names which do not respect the new identity criterion
as urelements.

It is not hard to show that for any A and B, the class of all p ∈ P such that
p ` A = B is a set and belongs to RO(P ).

3.4 Defining sethood

We define conditions for a name to be the name of a set under a condition p:
p ` set(A) just in case (∀q ≥ p.(∀xy.((q ∈ A[x])∧ (q ` x = y))→ q ∈ A[y])).
This captures precisely the idea that a name is a set if it respects the new

identity criterion: it says that if x is (intuitively) an “element” of A and x = y,
then y is an “element” of A, under any condition stronger than p.

This definition requires careful attention to stratification. In the definition
of equality, A and B each have the same type (just as in A = B), x is one type
lower, and p and q are two types lower. Here, we have q being one type lower
than x (and two types lower than A) in q ∈ A[x], but q is two types lower than x
in q ` x = y. This is not a problem, but only because P is a strongly cantorian
set: the types of variables p and q restricted to P can be adjusted as needed to
restore stratification.

With this remark on stratification, it is not hard to show that the class of
all p ∈ P such that p ` set(A) is a set and belongs to RO(P ).
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3.5 Defining membership

Now that we have sethood, it is easy to define membership.
p ` x ∈ A just in case p ∈ A[x] ∧ p ` set(A)
Observe that the type of x is one lower than the type of A.
It is important to observe that the relation between the types of A and B

in p ` A = B is the same as in A = B, and the relation between the types of x
and A in p ` x ∈ A is the same as in x ∈ A, while the type of the condition can
be ignored, because it is an element of the s.c. set P .

It is not hard to see that the class of all p ∈ P such that p ` x ∈ A is a set
and a member of RO(P ).

3.6 Logical considerations

We define forcing of complex sentences.
p ` φ ∧ ψ just in case (p ` φ) ∧ (p ` ψ)
p ` ¬φ just in case (∀q ≥ p.¬(p ` φ))
p ` (∀x.φ) just in case (∀a.(p ` φ[a/x]))
There is no problem with representing sentences with arbitrary sets replacing

variables (as is required in the definition of forcing of universal sentences). It
should be noted that this definition only succeeds for concrete sentences; we do
not succeed in defining a set relation ` between conditions and sentences.

It is the case, however, that p ` φ will be stratified if φ is stratified; this is
true of atomic sentences and nothing in the definition of logical operators will
interfere with it.

Further, the class of p ∈ P such that p ` φ will be “regular open” for any
φ (though it may fail to be a set if φ is unstratified): we have noted that this
class is a set and an element of RO(P ) for each atomic sentence φ, and the
Observation following the definition of RO(P ) allows us to prove by induction on
the complexity of sentences that the class of p such that p ` φ will be “regular
open” (and so be an element of RO(P ) if it is a set). If φ is stratified, the class
of p ∈ P such that p ` φ will be a set (and so a member of RO(P )), since p ` φ
will also be stratified.

It is worth noting that in some extensions of NFU (notably the system of [7]),
it is possible to arrange for all subclasses of strongly cantorian sets to be sets,
which would eliminate the need to worry about proper subclasses of P . Solovay
claims (personal communication) that NFU + Counting + “all subclasses of
s.c. sets are sets” is strictly weaker than ZFC (and we believe it); the system
of [7] is shown (in our paper [8]) to have the same strength as Morse-Kelley set
theory with the proper class ordinal measurable (this is weaker than ZFC + a
measurable, but stronger than the familiar large cardinal hypotheses short of a
measurable).

The other connectives are defined using their definitions in classical logic.
We now prove a basic theorem. The method of proof is essentially standard.

Forcing Theorem: If p ` φ and ψ is a classical logical consequence of φ, then
p ` ψ.
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Lemma: If it is not the case that p ` φ, then there is q ≥ p such that q ` ¬φ.

Proof of Lemma: This follows immediately from the fact that the class of
p ∈ P such that p ` φ is “regular open”.

Proof of Forcing Theorem: We work with a set model M of NFU + Count-
ing.

For the sake of a contradiction, in the model M fix an infinite s.c. partial
order ≤ with domain P (the result is trivial if ≤ is finite), a condition
p ∈ P and sentences φ0 and ψ0 such that it is the case that p ` φ0, ψ0 is
a logical consequence of φ0, but it is not the case that p ` ψ0.

We extend the language of NFU with constants for the empty set (recall
from above that this allows us to define the sethood predicate), the partial
order ≤ (from which we can define its domain P ), the specific condition
p ∈ P , and arbitrarily chosen values from M for any parameters appearing
in the sentences φ0 and ψ0.

We construct a countably infinite model M0 which satisfies the same sen-
tences of this language that the original model M satisfies.

We then define a two-valued logical structure for this language which sat-
isfies φ0 and does not satisfy ψ0, which suffices for a contradiction. We
use the standard construction of a generic ultrafilter in the partial order
≤.

We provide an enumeration {vi}i∈N of the definable “regular open” sub-
classes of P (not just the elements of RO(P )!) in M0 (this is of course
external to the model M0: M0 believes that RO(P ) is uncountable, and
some terms of this sequence may be proper classes for M0). We select a
sequence of elements {pi}i∈N of P in M0, in the following way. p0 = p.
Once pi has been chosen, we choose pi+1 ≥ pi so that pi+1 ` ¬ψ0 (this
obligation is fully discharged by the choice of p1, using the Lemma) and
either pi+1 ∈ vi or pi+1 is not dominated in the order ≤ by any element
of vi (this is possible because vi is “regular open”). Choices of pi at each
stage involve no appeal to the Axiom of Choice, since M0 is countable.

We then define p∞ ` φ, for each sentence φ of the extended language, as
(∃n.pn ` φ). The following are easy to show:

1. For any sentence φ of the extended language (even with parameters
representing arbitrarily chosen elements of M0) either p∞ ` φ or
p∞ ` ¬φ: thus p∞ ` ¬φ iff it is not the case that p∞ ` φ.

2. p∞ ` φ ∧ ψ iff p∞ ` φ and p∞ ` ψ.

3. p∞ ` (∀x.φ) iff for all a ∈M0, p∞ ` φ[a/x].

Further, we need to verify that our defined equality has the correct logical
properties in this context. It is sufficient to establish that substitutions of
equals for equals in atomic sentences behave correctly.
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Suppose that p∞ ` A = B. We then need to show that p∞ ` A = C
is equivalent to p∞ ` B = C and that p∞ ` C = A is equivalent to
p∞ ` C = B. It is sufficient to observe that p ` A = B iff p ` B = A for
all p ∈ P and that p ` A = B and p ` B = C together imply p ` A = C
for any p ∈ P .

Further, we need to show that p∞ ` A ∈ C iff p∞ ` B ∈ C. If p∞ ` A ∈ C,
then for some n, pn ` set(C) and pn ∈ C[A]. Further, we may choose n
large enough that pn ` A = B (because p∞ ` A = B). From this we have
pn ∈ C[A] iff pn ∈ C[B], whence we have pn ` set(C) and pn ∈ C[B],
from which pn ` B ∈ C, thus p∞ ` B ∈ C as desired. The other direction
is symmetrical.

Finally, we need to show that p∞ ` C ∈ A iff p∞ ` C ∈ B. It is
first necessary to establish that p∞ ` set(A) iff p∞ ` set(B) Suppose
p∞ ` set(A). Thus for some n pn ` set(A), which means that for all
q ≥ pn, q ` x = y and q ∈ A[x] implies q ∈ A[y]. We can suppose also
that pn ` A = B, by choosing n large enough. If q ≥ pn and q ` x = y and
q ∈ B[x], then q ∈ A[x] because pn ` A = B, q ∈ A[y] because q ` x = y,
and q ` B[y] because pn ` A = B, which shows that pn ` set(B). Since
the situation is symmetrical, we have p∞ ` set(A) iff p∞ ` set(B).

Now suppose that p∞ ` C ∈ A, i.e., for some n, pn ` C ∈ A. We may
suppose further that pn ` A = B, by choosing n large enough. It follows
from this that pn ` set(A) and thus pn ` set(B). Further, we have
pn ∈ A[C], which implies that we also have pn ∈ B[C], since pn ` A = B.
Since we have pn ∈ B[C] and pn ` set(B), we have pn ` C ∈ B, and
so p∞ ` C ∈ B as desired, and symmetry of the situation completes the
argument.

It follows that we have constructed a two-valued logical structure for the
(extended) language of NFU (upon identifying elements A and B of M0

iff p∞ ` A = B), in which φ0 holds and ψ0 does not. But we see now that
if p∞ ` φ0 and ψ0 is a logical consequence of φ0, we should have p∞ ` ψ0

as well, which is a contradiction.

This completes the proof of the Forcing Theorem.

In the absence of choice (as in NF ) we may have p ` (∃x.φ) without having
any name a such that p ` φ[a/x]. This appears to be harmless: there will be a
dense set of conditions q stronger than p such that there is a name a (depending
on q) such that q ` φ[a/x], and the Forcing Theorem still holds (notice that
we did not assume that the model M satisfied Choice in the proof above). It
is possible that the same thing might happen with witnesses to unstratified
sentences (∃x.φ) in the presence of choice.

3.7 The axioms of NFU hold

The definitions of sethood and membership were engineered to make weak ex-
tensionality hold; we will not present details.

10



We will exhibit a name for the set {x | φ} which will witness the truth
of comprehension under any condition: the set of all pairs (a,A) where A is
{p ∈ P | (p ` φ[a/x])} does the trick.

If φ is stratified, the set A will exist for each a and be “regular open”. It is
then easy to see that set(A) holds (this follows from the fact shown in the proof
of the theorem above that the defined equality has the correct logical properties,
so that p ` a = b and p ` φ[a/x] entail p ` φ[b/x]) and that p ` (∀x.x ∈ A ≡ φ)
for any p ∈ P , which is what is wanted.

The Axiom of Counting continues to hold for the standard reasons that
forcing models have the same natural numbers as the models they are built
from. Choice continues to hold (if it held in the original model) for the same
reason that choice is preserved by the usual forcing constructions.

3.8 Familiar results in NFU

Familiar results such as the independence of the continuum hypothesis can be
established in NFU using this forcing technology. The proofs go essentially the
same way as in ZFC . The fact that NFU uses different definitions for ordinal
and cardinal numbers makes for some superficial differences in the way a full
development looks; we do not give details here.

We have used a “Boolean-valued” approach here (actually, we really think
in terms of the “possible world semantics” for intuitionistic logic). It is possible
to get 2-valued interpretations using ultrafilters if one has choice, by means
strictly internal to one’s model of NFU (not by appeal to external countability
of a model as in the proof above). The technology of countable models and
generic ultrafilters seems less natural in NFU , though it can be adapted to this
context (and in fact, we use it in our proof of the Forcing Theorem). It is
generally less natural to think of (set) models of NFU inside NFU than it is to
think of set models of ZFC inside ZFC .

4 What about NF?

If we began with a model of NF , we would end up with a forcing interpretation
of NFU : the construction creates urelements (names which do not respect the
equality of the forcing interpretation).

But the picture is different in this treatment of forcing than in the “pre-
historic” treatment. The surprise is that this construction does not create very
many urelements. It turns out that one can define an injection from the universe
of the forcing interpretation into the sets, if the original model satisfied strong
extensionality, which means that V and P(V ) are the same size (by Schröder-
Bernstein). One can then apply a construction due to Maurice Boffa (in [1]):
in any model of NFU with a bijection f from V onto P(V ), defining a new
membership relation x ∈new y ≡ x ∈ f(y) gives an interpretation of NF .

This is a variation of the permutation method introduced by Scott ([13]),
though f is not actually a permutation. The kinds of results for which con-
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sistency and independence results are proved by forcing are invariant under
“permutation methods”, even as generalized here.

For example, if one forces on the inclusion order on well-orderings of subsets
of the continuum in a model of NF + AxCount + DC, it is straightforward to
show that one obtains an interpretation of NFU + AxCount + DC + “the con-
tinuum is well-ordered”, which can be changed by a Boffa-style “permutation”
to a model of NF + AxCount + DC + “the continuum is well-ordered”. This is
a new kind of independence result in the NF context. DC (dependent choices)
is needed to make the forcing argument work correctly; stronger versions of de-
pendent choices would be needed for relative consistency proofs of the existence
of well-orderings of larger sets.

4.1 The Injection from the Universe into the Sets in a
Forcing Extension of NF

We describe the injection from the universe into sets found in any forcing ex-
tension of a model of NF . It should be clear that the construction which follows
will not work in the presence of urelements!

Recall that the reason that a set considered as a “name” becomes an ure-
lement (under a condition) in the interpretation is that it does not respect the
identity criteria of the forcing extension (under that condition).

We define, for any set x, char(x) as the function taking each element of
x to P and each non-element of x to ∅. The nice property of char(x) is that
(∀p.(x = y ≡ (p ` char(x) = char(y)))). It is important to note that the type
of char(x) is the same as the type of x.

For each set A we define A∗ as the function taking each x to the set of all con-
ditions p such that (∀q ≥ p.(∃r ≥ q.(∃y.((r ` x = char(y)) ∧ y ∈ A[r])))). The
idea is that each “element” y of A under any condition is replaced by char(y),
which eliminates conflicts between the identity conditions of “elements” of A∗

in the original model of NF and their identity conditions in the forcing exten-
sion. To restore sethood in the forcing interpretation, one then adds (under each
condition) all objects x equal to an appropriate char(y) under that condition.

It is straightforward to see that p ` A = B iff p ` A∗ = B∗ and that
p ` set(A∗) for any condition p and sets A,B. We can thus construct a map
in the forcing extension implementing (A 7→ A∗), which will be bijective and
send every object to a set. We have already seen that this is enough to allow
an interpretation of NF in the forcing extension.

5 Conclusion

We believe that the most important result in this paper is that there is a “native”
approach to forcing in NFU which does not rely on coding a version of Zermelo
set theory into NFU (as did the “prehistoric” approach). This strengthens our
thesis (developed in [6] and [7]) that NFU can be the basis of an independent
approach to the foundations of mathematics.
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The fact that it becomes possible to do forcing in NF is appealing, but turns
out to be of limited usefulness because of the failure of choice in NF , though
it is impossible to discount the value of the ability to get any new relative
consistency results with NF .

The same techniques can be used to build nonclassical models of intuitionistic
NFU , by using general upward closed subsets of the domain of an s.c. partial
order as “truth values” instead of “regular open” upward closed subsets. We
are investigating the possibility that a similar “trick” will allow the construction
of nonclassical models of intuitionistic NF from these nonclassical models of
intuitionistic NFU .
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