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Simple type theory (TST ) is taken here to be the typed theory of sets with
types indexed by the natural numbers, atomic formulas of the forms xn = yn

and xn ∈ yn+1, and with axioms of extensionality (objects of any positive
type with the same elements are equal), comprehension ((∃An+1.(∀xn.xn ∈
An+1 ↔ φ)) for any formula φ in which A is not free), and infinity (a precise
formulation of the axiom of infinity will be given below).

We augment the language of TST with set abstracts {xn | φ} for each
formula φ (recursively including the new formulas with set abstracts). Of
course, {xn | φ} is taken to denote the unique An+1 such that (∀xn.xn ∈
An+1 ↔ φ).

A Forster term model of a set theory is a model all of whose elements are
of the form {x | φ}, where (∃A.(∀x.x ∈ A ↔ φ)) is a comprehension axiom
of the theory, and φ is a formula in the language of the theory augmented
with set abstracts which contains no free variables other than x. We call
these “Forster term models” because Thomas Forster has considered this
kind of model for certain weak theories, as for example in [2]. The existence
of a Forster term model of a theory is not a trivial question to decide. It is
reasonably easy, for example, to present a consistent set theory (a fragment
of NFU ) such that any Forster term model of the theory would be a model
of NF (details not given here). In the case of type theory, we must modify
the definition of “Forster term model” because type 0 is not inhabited by
sets: we add type 0 constants ai indexed by natural numbers to our language
and require that the ai’s have distinct referents, that every type 0 term be
the referent of an ai and that all objects of positive type be reference of
parameter-free set abstracts {x | φ} as above (these may contain the type 0
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constants as subterms).
We show that TST has a Forster term model. Robert Solovay has already

shown this (unpublished communication); our argument here is independent
of his in its details though it uses much the same technology and the gen-
eral approach was inspired by his arguments. We claim no originality for
the argument either, but certainly any errors in it have nothing to do with
Solovay’s unpublished work. A structure very similar to the structure which
we show to be a Forster term model was described by us (entirely indepen-
dently of the conversation with Solovay) in 1998 during our visit to Thomas
Forster in Cambridge. However at that time we were quite certain that this
structure was not a Forster term model of TST : it was only the conversation
with Solovay which convinced us that (when slightly(?) modified) it is one.
We believe that it is the same structure which Solovay showed to be a Forster
term model, though presented differently: it is the minimal model of TST
with a fixed countably infinite set of type 0 objects.

The description of the structure is much easier than the proof that it is
a Forster term model.

A set abstract {xn | φ} is said to be predicative iff no variable bound in
the abstract is of type higher than n and no free variable in the abstract is
of type higher than n + 1. Notice that the type of a set abstract {ym | ψ}
appearing in a predicative {xn | φ} can be no higher than n + 1 since the
type of the bound variable ym is constrained to be no more than n. This
notion of predicativity, originally going back to Russell, is described for this
kind of type theory by Marcel Crabbé in [1], for example.

It is useful to observe that the referent of any set abstract at all is an
iterated set union of the referent of some predicative set abstract: if ι is the
singleton operation,

⋃m{ιm(xn) | φ} is of course {xn | φ}, and if m is taken
to be large enough, {ιm(xn) | φ} (written a bit more carefully) will be a
predicative set abstract. This is noted in [1].

The union of {xn+1 | φ} is {yn | (∃xn+1.yn ∈ xn+1 ∧ φ)}. The singleton
image of {xn | φ} is {yn+1 | (∃xn.φ∧xn ∈ yn+1∧(∀zn.zn ∈ yn+1 → zn = xn))},
in the event that anyone doubts that there are legitimate operations on set
abstracts.

A structure for the language of TST is a sequence τi of sets and relations
∈i+1⊆ τi×τi+1, with the property that the preimage under ∈i+1 of an element
of τi+1 uniquely determines the element. The sets τi are candidate types, the
relations ∈i+1 are candidate membership relations, and the condition ensures
that the membership relation is extensional.
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The notion of satisfaction of a formula of the language of TST is defined
in the obvious way in any structure for the language of TST . The axioms of
TST (other than extensionality) are not necessarily satisfied in an arbitrary
structure for the language of TST .

In all structures for the language of TST which we will consider, the
elements of the τi’s will be terms of a language we will describe shortly and
in particular τ0 will be a fixed countably infinite set of constants {ai | i ∈ N}.

We describe a formal language L2, parameter-free terms in which will be
candidates for membership in the structures we describe. We suppose that
the definition of an ordinal used is appropriate to the context (the definition
of ordinal number in TST is different from the usual definition in set theory,
and we will work inside TST eventually).

For any natural number i, ai is a term of L2, of type 0. Of course variables
of type n are terms of L2 of type n.

Any formula of the language of TST not containing set abstracts is a
formula of L2. An additional unary predicate W is added: the intended
meaning of W (x) is “x is a well-ordering”. The addition of W to the formal
language L2 is the additional refinement not found in the construction we
described in 1998; we do not know whether this addition to the language is
actually necessary.

Any notation {xn | φ}α, where α is an ordinal and φ is a formula of L2 in
which no term of type higher than n + 1, no bound variable of type higher
than n, no free variable other than x, and no ordinal superscript greater than
α appears, is a term of L2 of type n+ 1. Note that all set abstracts of L2 are
parameter-free.

Any notation
⋃
t, where t is a term of L2 of type n ≥ 2, is a term of L2

of type n− 1. We use the notation
⋃i t to abbreviate the result of applying⋃

i times.
Any formula obtained by substituting a term of L2 for a free variable in

a formula of L2 is a formula of the new formal language.
L2 is the smallest class of formulas and terms satisfying these conditions.
We have described all of these objects as bits of formal syntax; they can

readily be coded as mathematical objects in the usual set theory, but we do
not burden ourselves with the details here. We will have something to say
about how to code them in the less familiar context of TST below.

We suppose that we have defined a well-ordering of the terms of L2 under
which the ai’s appear before all other terms, terms appear after their proper
subterms, terms of higher ordinal index appear after terms of lower ordinal
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index, and set abstract terms of higher type appear after set abstract terms
of lower type (note that set union terms appear after the terms of which they
are unions, which are of higher type). This is clearly possible and the details
are not important to our purpose.

We construct an ordinal-indexed sequence Σ of structures for the language
of TST . We denote τi in the structure Σα by τi,α and ∈i+1 in Σα by ∈i+1,α.

We set up the basis of the construction. τ0,α is the set of ai’s in every Σα.
τi+1,0 is empty for every i.

Suppose that Σβ has been defined for each β < α, and that each Σβ is
inhabited by terms of L2 with ordinal index ≤ β.

We define a structure Σα,1 which is simply the type-wise union of the Σβ’s
for β < α: τn,α,1 is defined as the union of all τn,β for β < α, and similarly
∈n+1,α,1 is the union of all ∈n+1,β,1 for β < α.

We define a second intermediate structure Σα,2 which is in effect the
closure of Σα,1 under the set union operation. The terms in τn,α,1 will all
appear in τn,α,2 and their preimages under ∈n,α,2 (if n > 0) will be the same
as their preimages under ∈n,α,1. The additional terms in τn,α,2 (for each n > 1)
will be selected, and their preimages under ∈n,α,2 will be defined, by recursion
along the order on terms. Each term added to τn,α,2 will be of the form

⋃i t
where t is a term of τn+i,α,1. Each such term will be assigned a referent in
any case and will be added to τn,α,2 (and regarded as its own referent) just
in case no earlier term has been assigned the appropriate preimage under
∈n,α,2 (the union of all preimages under ∈n,α,2 of elements of the preimage
under ∈n+1,α,2 of the referent already assigned to

⋃i−1 t); if an earlier term
has already been assigned this preimage we regard the earlier term as the
referent of

⋃i t and do not add the latter term to the type; otherwise we add
the term

⋃i t to the type and assign it the appropriate preimage.
Finally, we define Σα as (in effect) the “predicative closure” of Σα,1. The

terms in τn,α,2 will all appear in τn,α and their preimages under ∈n,α (if n > 0)
will be the same as their preimages under ∈n,α,2. The additional terms in
τn,α (for each n > 1) will be selected, and their preimages under ∈n,α will be
defined, by recursion along the order on terms. Each term added to τn+1,α

will be a predicative set abstract of the form {xn | φ}α. Each such term will
be assigned a referent in any case and will be added to τn+1,α just in case no
earlier term has been assigned the appropriate preimage (the set of all x in
type n of Σα such that φ is satisfied for this value of x in Σα: this is definable
without circularity because all terms of type lower than x with ordinal index
≤ α and all terms of the same type as x which appear as parameters in φ
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appear earlier in the order on terms than {xn | φ}α and so have already
had their referents and the preimages of their referents defined: since φ is
predicative this means that all constants appearing in φ have been assigned
referents and extensions and all elements of the domains of any quantifiers
in φ have already been assigned referents and extensions); if an earlier term
has already been assigned this preimage we regard the earlier term as the
referent of {xn | φ}α and do not add the latter term to the type; otherwise we
add the term {xn | φ}α to the type and assign it the appropriate preimage.

The structure Σα will be a model of the version of TST in which compre-
hension is restricted to providing the existence of predicative {xn | φ}’s. We
reiterate the point that when a term {xn | φ}α is being considered for addi-
tion to the structure, all lower type abstracts to be added to Σα have already
been added (and so the domains of any permitted quantified variables have
been fully constructed) and all parameters in φ have already been added, by
consideration of the properties of the order on terms.

If Σα is closed under set unions, it will be a model of TST . The reason
for this is that every set abstract of TST can be expressed as a possibly
iterated set union of a predicatively defined set, so predicative comprehension
combined with set union gives the full comprehension axiom of TST .

If this construction is carried out in the usual set theory ZFC , it must
terminate. The cardinality of τi,α is≤ ii for each α (because there is a natural
way to associate each element of τi,α with an element of the ith iterated power
set of the countable set τ0,α), so the cardinality of

⋃
i τi,α ≤ iω. If Σα = Σα+1,

then Σα = Σβ for all β > α. Thus there can be no more than iω ordinals
α such that new elements are added to the structure at stage α, and the
structure must be remain the same at two successive stages and so at all
subsequent stages (and so be closed under set unions, and so be a model
of TST ) at some point before stage i+

ω . We call the ordinal at which the
construction stabilizes Ω.

It is useful to note that the predicate W of well-orderedness is definable
in terms of equality and membership in the limit model (in exactly the usual
way). The effect of including this predicate is to exclude the possibility that
there might be apparent well-orderings in ΣΩ which are not actually well-
orderings from an external standpoint.

A subtler approach shows that Ω must actually be countable. Briefly, the
reason for this is that we can construct a countable model of the theory of
ΣΩ, in which the construction of Σα’s stabilizes at a countable ordinal γ, and
then absoluteness considerations show that the construction of Σα’s really

5



does stop at the countable stage γ = Ω. We explain the details, leaving
one major point to subsequent discussion (which does not depend on the
countability of Ω, so no circularity ensues).

Augment the language L2 with two additional notations to obtain a fur-
ther language L3. All formulas of L2 are formulas of L3. For any formula
φ of L3, admit (εxn.φ) as a notation for the lexicographically first object in
ΣΩ such that φ is satisfied (or a default object if there is no such object).
In addition, add ordinal variables to our notation and admit (µα < β.φ) as
notation for the first ordinal α such that φ, for any formula φ of L3 and
ordinal β (and 0 if there is no such ordinal). Note that the µ notation can be
used to define bounded quantifiers over ordinals: (∃α < β.φ(α)) is equivalent
to φ(µα < β.φ). The notation α ≤ β should also be admitted. We can then
construct a term model all of whose elements can be built as type 0 constants,
set abstracts with ordinals defined using the µ notation, and Hilbert symbols.
This structure will be countable and will have the same first-order theory in
the augmented language as the true Σα. Its ordinals are well-ordered (being
a subcollection of the true ordinals). Any set defined as a Hilbert symbol
nonetheless has an ordinal index: there is a definable ordinal Ultn such that
all type n sets must be constructed before stage Ultn (we will see the reasons
for this below) and the index of a term T n is the first ordinal α < Ultn such
that T n ∈ {xn | xn = xn}α. Every element defined as a Hilbert symbol can be
presented in a form in which no Hilbert symbol appears except inside µ-terms:
any term T is actually a term of L2 of the form

⋃j{x | φ}α. We have already
shown how to express the rank α of T as a µ term. The difficulty which might
seem to exist here is that the formula φ might contain ordinals which we can-
not express as µ-terms. If T is of the form {xn | φ(α1, ..., αn)}α, we define
an α1 which will work as (µα1 ≤ α.(∃α1 . . . αn ≤ α.T =

⋃
j φ(α1, ..., αn))):

call this α∗
1. Similarly, when we have defined α∗

1, . . . , α
∗
i , we define α∗

i+1 as

(µαi+1.αi+1 ≤ α ∧ (∃αi+2 . . . αn ≤ α.T =
⋃j φ(α∗

1, . . . , α
∗
i , αi+1, . . . , αn))). So

we see that any parameter-free term can be presented in a form in which
any Hilbert symbols appear inside µ-terms. Notice that there is no uniform
way to do this expressible internally to the term model: we need to know
externally what j and φ will work to find these ordinals.

Note that the ordinals of the term model are well-ordered (being a subset
of the true ordinals of the original model). We claim that the stages of
the term model are actual stages and none are skipped. To verify this, it is
sufficient to establish that each stage of the construction in the term model is
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in terms of the term model itself the predicative closure of the closure under
unions of the typewise union of all earlier stages in the term model itself
(not in the general model). We have just shown this: every object in the
stage indexed by α in the term model (α being an ordinal represented by a µ
term) is in fact representable in terms of the term model as either an ordinal-
indexed set abstract with index ≤ α or the set union of an ordinal-indexed
set abstract with index < α or a type 0 constant.

This implies in turn that the stages of the construction in the term model
are exactly the same as the stages in the true model.

Finally, we show that the term model construction, and so the true con-
struction, must terminate at a countable ordinal stage. We defer to below
the proof that there is an ordinal stage Ultn definable in terms of TST by
which all type n terms must be constructed. Since the ordinal Ultn is an
ordinal in the term model of TST , it is countable from an external stand-
point (almost all of the ordinals Ultn are uncountable ordinals internally
to the model of TST ). Since the term model construction fills type n after
countably many stages, the true construction does so. Now this implies that
the term model construction (and so the true construction) terminates at or
before the countable ordinal limit of the countable ordinals Ultn (this limit
is not an ordinal in the model of TST at all; it is too large). We will call the
actual ordinal at which the construction terminates Ω. Note that we cannot
define Ω in the language L3 of the term model construction, but we do not
need to.

The main claim of this paper is that ΣΩ is in fact a Forster term model
of TST . Note that this is not at all obvious. Every element of ΣΩ is defined
as a set abstract with the additional decoration of an ordinal index. It
is not obvious that the ordinal indexed stages Σα can be represented in
terms internal to TST , nor is it obvious that all the ordinals used in the
construction can be represented in terms internal to TST . Both of these
non-obvious conjectures turn out to be true, but demonstrating them will
require work; moreover, the construction of Σα’s inside a model of TST will
be rather delicate (in the end, we will be constructing Σα’s for each α strictly
less that Ω inside ΣΩ itself).

We review the mathematical competence of TST . The pair 〈x, y〉 can be
defined for objects x, y of the same type n as {{x}, {x, y}} (as in the usual
set theory). This implementation of the pair is somewhat unsatisfactory
because 〈x, y〉 is two types higher than x or y. In sufficiently high types
(certainly above type 10, say), a type level ordered pair (having the same
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type as its projections) can be defined (see Quine’s [4] for details). Relations
and functions can then be defined using ordered pairs as usual.

Two sets A and B of the same type are said to be equinumerous if and
only if there is a bijection from A to B. The cardinal number of A, written
|A|, is the set of all sets which are equinumerous with A. Cardinal numbers
are equivalence classes under equinumerousness. The sum of two cardinals
κ and λ is the (uniquely determined) cardinality of the union of an element
of κ and element of λ which are disjoint from each other. We define 0 as
|∅| and 1 as |{x}| (this does not depend on the choice of x). The Axiom of
Infinity is the assertion that for every cardinal κ, κ+ 1 is defined (we assume
this). The finite cardinals (natural numbers) are the cardinals which belong
to every set which contains 0 and is closed under addition of 1. Notice that
the natural numbers are defined independently in each type n ≥ 2.

For each x, we define ι(x) as {x}, the singleton of x, and ι“A as {ι(x) |
x ∈ A}, the singleton image of A. For any cardinal κ, we define T (κ) as |ι“A|
for any element A of κ. For any cardinal κ, the cardinal T (κ) is “the same”
cardinal one type higher. In particular, for any natural number n, T (n) is
also a natural number and can reasonably be thought of as the same natural
number.

We now consider the construction of Σα’s inside a model of TST . The
definition of formal notations in TST presents no essential difficulties (this
is evident since arithmetic and a general type-level ordered pair are definable
in TST ). The definition of a structure for the language of TST does not
present difficulties either, though it should be noted that all the sets τi and
relations ∈i+1 will inhabit the same fixed type k in terms of the ambient TST
in which one is working. Note that satisfaction of formulas in a structure for
the language of TST is routinely definable in TST (in a type higher than
the working type in which the structure is given).

The principal obstruction to the construction of Σα’s in TST is that in
each given type k there are fewer ordinals than there are in type k + 2. An
ordinal of type k is an equivalence class of well-orderings of type k− 1 under
isomorphism; we suppose here that we use the type level ordered pair to
implement well-orderings, so these well-orderings act on type k− 2 objects).
If we change our working type from k to k + 2, the stages up to the largest
ordinal in type k will be isomorphic to the corresponding stages in type
k + 2, but type k + 2 may contain further stages (because it definitely does
contain further ordinals, such as the order type of the natural order on type
k ordinals).
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Some models of TST are large enough to contain all of ΣΩ in a single
type (and will see it to be countable internally). However, ΣΩ itself cannot
carry out its own construction fully in any single type, since it would then be
possible to define truth in ΣΩ inside ΣΩ itself, which is impossible by Tarski’s
theorem (the definition of truth in the internal ΣΩ will agree with that in
the external ΣΩ because the well-orderings and so the ordinals of ΣΩ are true
well-orderings).

We show how to associate an actual set Si,et of type i with a term t ∈ τi,α
(which is itself an object of a working type k in the ambient TST ), given
the additional parameter e, a finite set of assignments of values in the actual
type 0 to the constant terms ai whose domain includes all ai’s appearing in t
(increasing the domain of e will not change the meaning of Si,et ). If i = 0, the
term t is actually equivalent to a term ai, and we define Si,et as e(ai) = e(t).
If i = j + 1, we suppose that we know how to define Sju,f for any type j

term u and suitable environment f , and we define Sj+1,e
t as the set of all Sj,fu

where f extends e and u ∈j+1 t. In type theoretic terms there is no uniform
definition of an operation S: there is a sequence of definitions of operations
Si for each type i. Note that any Si,et is the referent of a type 0 term ai or
of a closed set abstract in the language of TST .

It follows from these considerations that any term of L3 translates into an
actual set in any model of TST . Terms of L2 have their intended reference.
Terms of L3 have correct reference because of the fact that only bounded
µ-terms are provided. We will see below that any ordinal index of a stage in
the construction does appear as an ordinal in some type of ΣΩ.

The natural numbers of the model ΣΩ are standard. This is true because
the sets of type 1 in ΣΩ are exactly the finite and cofinite subsets, so the
definable notion of being a type 1 set which embeds into its complement pre-
cisely captures “standard finite”, and the notion of “(i− 1)-fold image under
the singleton operation of a standard finite set” precisely captures “standard
finite set of type i”. It is then obvious that the natural numbers (defined as
Frege cardinals in each appropriate type) are standard. (This in turn ensures
that Quine’s definition of the ordered pair in [4] works correctly without any
need for annoying technical adjustments) The ordinals of the model ΣΩ are
standard, because the well-orderings in ΣΩ are true well-orderings. The se-
mantics of the W predicate in the language L2 ensures that any linear order
which is not well-ordered is recognized internally as not well-ordered (the set
of all initial segments of an externally non-well-ordered linear order which are
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true well-orderings will be constructed, and the domain of the linear order
minus the unions of the domains of the well-ordered initial segments will be
a nonempty subset of the domain with no least element in the order). This
implies that the types, formulas and terms in Σα’s constructed internally
to ΣΩ are precisely isomorphic to true types, formulas and terms, and the
construction of Si,et will construct the true referent of t.

It cannot be the case that Ωn+3 (the ordinal at which type n+ 3 first fills
up in the construction) is an ordinal in type n. If this were true we could
in type n + 3 of ΣΩ define satisfaction for statements about type n + 3 as
represented internally to ΣΩn+3 (as constructed with type n+1 as the working
type, in which type n ordinals can be used as notations in formulas). But
this internally represented type n+3 would be the same structure as the type
n + 3 in which satisfaction was being defined, which would violate Tarski’s
theorem.

It is provable in TST that the construction, as viewed from any working
type k sufficiently larger than n, fills type n at or before an definable ordinal
stage found in type n + 4 (4 here is large enough but might be too large).
The argument for this is similar to the argument for the condensation lemma
in the usual constructible universe (see for example [3], which contains much
other useful information about the usual constructible universe L). Consider
a language for the theory of TST which contains constants for each element
of the first n types. This can be represented internally to TST (in type n+2,
say). Build a term model made up of terms of this enriched language for the
theory of the working type of TST within which the construction is being
carried out (however much higher than n this may be taken to be). This
can be carried out in say type k + 2. Stages in the construction of the Σα’s
as represented inin this term model will be isomorphic to true stages of the
construction for the usual reasons of absoluteness. Here we can see that all
sets in type n ever built in the construction at the given working type k are
actually built (because the term model for this language contains names for
them) and are built at stages which are order types of well-orderings of type
n objects (because all terms in the enriched language can be taken to be
(suitably iterated singletons of) type n objects as long as n is large enough
that type n supports a type level pair and contains the natural numbers).
Define Ultn as the first ordinal which is not the order type of any well-
ordering of (suitably iterated singletons of) type n objects; in types n + 2
and above this ordinal is defined as a closed set abstract in the language of
TST . By absoluteness considerations, the construction of type n terms in the
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given working type k must actually stop before stage Ultn (no matter how
large k is). Note that higher working types may add more type n terms to
the construction (this is not ruled out) but all working types agree that all
type n terms are added by the ordinal stage Ultn of the construction. Note
further that Ultn is definable by a closed set abstract (being definable purely
in terms of TST ): the availability of Ultn as a bound on ordinal stages at
which type n sets can be added in the construction is the reason that the
formal language L3 does not need unbounded µ-terms.

Now each ordinal Ultn is a true ordinal from an external standpoint (and
so is the possibly smaller Ωn), from which fact and the considerations in
the paragraph above it follows that the (external) ordinals of stages in the
construction run through all (internal) ordinals of the model. Moreover, it is
clear that the limit of all the (internal) ordinals of the model is the external
ordinal Ω, since each type n fills up at a stage Ωn short of Ω, from which
we can see that no further sets could be added at the limit stage. We know
that every set of whatever type in the model is defined externally by a term
in L3; this term is also a term internally to the model and at a high enough
working type must represent the same set internally that it does externally.
We know how to convert internal terms of L3 to closed set abstracts. So the
proof is complete: every element of the model is externally identified with a
term t of L3, which has an internal correlate in the model, which we know
how to convert to a set Si,et (letting e assign referents to all type 0 objects
which are actually involved in t) which is the referent of a closed set abstract
(or an ai if it is of type 0) in the language of TST and which is actually the
same set (or type 0 object) we started with: so every set is the referent of a
closed set abstract (or an ai if of type 0) as desired.

A feature of this development not found in the original presentation of
this paper at the conference in Cambridge is the addition of the predicate
W of true well-ordering to L2. We do not know whether this is necessary
for a proof of the result, but we do not know how to prove that all internal
well-orderings of ΣΩ (as defined without use of the predicate W ) are well-
orderings from the external standpoint. If this could be proved, then our
original 1998 construction would also be shown to produce a Forster term
model.

We have two questions. One is indicated in the previous paragraph: can
W be eliminated from the construction, and does the original 1998 construc-
tion give a Forster term model? The second question has to do with the
theory TNT defined by Hao Wang in [5], which differs from TST in having
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types indexed by all integers, and is easily seen to be consistent by a com-
pactness argument. Does TNT have a Forster term model (note that if TNT
does not, then NF certainly does not)? Superficial examination indicates
that this is a much harder question than the question about TST answered
here.
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