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1 Introduction

In [1], we introduced a system TRC of illative combinatory logic precisely equiv-
alent in consistency strength and expressive power to Quine’s set theory “New
Foundations” of [2] (usually called NF ). It remains an open question whether
NF is consistent (relative to the usual set theory). We also exhibited a system of
combinatory logic TRCU , a weakening of TRC , which is precisely equivalent in
consistency strength and expressive power to Jensen’s NFU (”New Foundations
with ’ur-elements”’) with the addition of the Axiom of Infinity. Jensen showed
in [3] that this theory is consistent relative to the usual set theory.

Marcel Crabbé introduced fragments NFP (predicative NF ) and NFI (which
we call “mildly impredicative” NF ) of NF in [4], and showed them to be consis-
tent and of quite low consistency strength. We will present a fragment TRCI of
TRC which is precisely equivalent in consistency strength and expressive power
to NFI ; we also present a weaker fragment TRCP of TRC which is related to
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NFP but for which we have not been able to establish an equivalence with NFP .
The fragment TRCP related to NFP commands interest because it is “natural”
in character, whether an exact equivalence can be established or not.

We review the definition of NF , and give the definitions of the fragments
NFU , NFP , and NFI . NF is the first-order theory with equality and member-
ship whose non-logical axioms are extensionality (sets with the same elements
are equal), and those instances of the axiom scheme of comprehension (for each
condition φ in the language of NF and variable x, “{x|φ} exists”) in which the
condition φ is ”stratified”. A formula in the language of NF is said to be ”strat-
ified” if each variable occurring in the formula can be assigned a non-negative
integer type in such a way as to obtain a formula of the simple theory of types.

NFU is obtained from NF by weakening extensionality so that if two objects
have the same elements, either they are equal or both have no elements. This
amounts to the introduction of atoms or ur-elements. NFP and NFI have full
extensionality, but weaker schemes of comprehension. The formula meaning
“{x|φ} exists” belongs to the comprehension scheme of NFI if it is stratified
and satisfies the further restriction that the assignment of types can be made
in such way that types more than one greater than the type of x (i. e., greater
than the intended type of {x|φ} itself) do not occur. We refer to the condition φ
as being “mildly impredicative” (relative to x). It belongs to the comprehension
scheme of NFP if it satisfies the further restriction that no bound variable in φ
can have type greater than the type of x; all variables of the exact type of {x|φ}
are parameters. We refer to such a condition φ as “predicative” (relative to x).

Con(NFU ) is a theorem of Peano arithmetic; NFU + Infinity has the exact
consistency strength of the simple theory of types with the Axiom of Infinity
(see [3]). Crabbé showed in [4] that NFI interprets second-order arithmetic,
while Con(NFI ) is a theorem of third-order arithmetic, and that NFP interprets
Robinson’s arithmetic, while Con(NFP) is a theorem of Peano’s arithmetic. In
[5], we have shown how to construct a model of NFI within which it is possible
to interpret nth order arithmetic for every n. NF is known to be at least as
strong as the simple theory of types with the Axiom of Infinity; the proof of the
Axiom of Infinity in NF was first achieved by Specker, who showed in [6] that
the Axiom of Choice is false in NF–since the universe is a set in NF , and cannot
be well-ordered (by ∼AC ), it cannot be finite. No one has succeeded thus far
in constructing a model of NF in a more familiar set theory or in deriving a
contradiction from NF . The Axiom of Choice is consistent with NFP , NFI , and
NFU + Infinity.

These set theories have the strange feature that “very large” collections, such
as the universe, are sets. The natural numbers can be defined, using Frege’s
original definition, in such a way that the natural number n is the set of all sets
with n elements (for concrete n). The set of natural numbers N can then be
defined (in NF , NFI , NFU ) as the set of all objects which belong to each set
which contains 0 and is closed under the “successor” operation. In NFP , this
definition fails, as it involves a reference to all inductive sets, and the inductive
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sets would be assigned the same type as the set being defined. For a fuller
treatment of set-theoretical constructions in NF , see [1]; Rosser’s [7] is a full-
scale development of mathematical logic in an extension of NF (which can be
adapted to NFU + Infinity, so avoiding the consistency problem).

NFP or NFI is strengthened to full NF by the addition of the Axiom of
Union. Consider the set of all n-fold iterated singletons of objects satisfying a
condition φ; if n is taken to be large enough, the type of the set being constructed
will exceed any type used in φ. Now n iterated unions will give the set of
objects satisfying φ. NFP is strengthened to NFI by the addition of the axiom
scheme consisting of all assertions “The union of {x|φ} exists”, where “{x|φ}
exists” is an axiom of NFP containing no parameters of the same type as {x|φ}.
Certainly, if “{x|φ} exists” is an axiom of NFI , the assertion ”{{x}|φ} exists”
can be expressed by an axiom of NFP with no parameters of the highest type,
and the union of {{x}|φ} would be {x|φ} if it existed, so the extension of NFP
implies NFI . It is easy to establish that all the axioms added to NFP are actually
axioms of NFI . Specker’s proof of the Axiom of Infinity can be used to prove
the Axiom of Infinity in NFP (and thus in NFI ); if the Axiom of Union is false,
Infinity certainly holds (finite sets have unions); if the Axiom of Union is true,
we are in NF , and Specker’s proof goes through.

2 TRCP Introduced

We describe the system of combinatory logic TRCP which we will show to be
related to NFP . TRCP is a first-order theory with equality. Atomic terms of
TRCP are Eq, Comp, π1, π2, and variables. If f and g are terms of TRCP , f(g),
(f, g), and K[f ] are terms of TRCP . These term constructions signify function
application, pairing, and the construction of constant functions, respectively.
We will always write f(g, h) instead of f((g, h)). We define Id as (π1,π2). We
will write Kn[f ] to represent the result of n iterated applications of the K-
constructor to f . The non-logical axioms of TRCP are as follows:

(Const): K[f ](g) = f

(Proj): πi(f1, f2) = fi (for i = 1,2)

(Surj): (π1(f), π2(f)) = f

(Prod): (f, g)(h) = (f(h), g(h))

(Comp): Comp(f, g)(h) = f(g(h))

(Eq): Eq(f, g) = if f = g then π1 else π2

(Ext): if f(x) = g(x) for all x, then f = g

(Nontriv): π1 6= π2

3



The theory TRC shown in [1] to be equivalent to NF has an atom Abst
in place of Comp (Comp can be defined in TRC ) with the more complicated
axiom (Abst): Abst(f)(g)(h) = f(K[h])(g(h)). Note that the proposition (Id):
Id(x) = x follows from (Proj) and (Surj). The theory TRCI is described below.

We define a notion of “relative type” for subterms of a term of TRCP . The
type of a term relative to itself is 0. If the relative type of a subterm (f, g) is n,
the relative types of the obvious instances of f and g are also n. If the relative
type of a subterm f(g) is n, the relative type of the obvious instance of f is
n+ 1 and the relative type of the obvious instance of g is n. If the relative type
of an instance of K[f ] is n, the relative type of the obvious instance of f is n−1.
We use this notion of relative type in the statement of an

Abstraction Theorem for TRCP : Let T be a term in the language of TRCP
and let x be a variable which does not occur in T as a subterm of any
subterm K[S] or with any relative type other than 0. It follows that
there is a term (λx)(T ) in which the variable x does not occur such that
“(λx)(T )(x) = T” is a theorem of TRCP . For any variable y which occurs
with type n in T and is not x, y occurs with type n− 1 in (λx)(T ).

Proof of the Abstraction Theorem for TRCP : Use induction on the struc-
ture of T . (λx)(x) = Id. (λx)(A) = K[A], where A does not contain x.
(λx)(U, V ) = ((λx)(U),(λx)(V )) (by (Prod) and ind. hyp.). (λx)(U(V ))
= Comp(U, (λx)(V )), since x cannot occur in U (it would have to have
type -1 in U , and there is no way for this to happen without x occurring
in a subterm K[f ] of U). (λx)(K[U ]) = K[K[U ]]; again, U cannot contain
x. The assertion about types is straightforward to verify. The proof of

the Abstraction Theorem is complete.

Corollary: Let T be a term of the language of TRCP and let x and y be
variables satisfying the conditions satisfied by x in the Theorem. It
follows that there is a term (λxy)(T ) not containing x or y such that
“(λxy)(T )(x, y) = T” is a theorem of TRCP .

Proof of the Corollary: Just as above, except that (λxy)(x) = π1; (λxy)(y)
= π2; all references to “not containing x” are replaced with references to

“not containing x or y”.

Using the Abstraction Theorem and Corollary, it is easy to show that TRCP
is equivalent to a λ-calculus which we now define. The atomic terms of this λ-
calculus are Eq and variables. If f and g are terms of the λ-calculus, f(g) and
(f, g) are terms of the λ-calculus. We define relative type of subterms of a term
as in TRCP for these term constructions, and declare the relative type of f to
be n − 1 if the relative type of (λxy)(f) is n. If f is a term of this λ-calculus
and x,y are variables which do not occur in f as subterms of terms (λzw)(g)
or with relative type other than 0, then (λxy)(f) is a term of this λ-calculus.
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We define (λx)(T ) as (λyz)(T ′), where T ′ is the result of replacing x with
(y, z) in T , y and z not occurring in T . The advantage of the use of (λxy)(f)
as the primitive form is that we do not need primitive notions or axioms of
projection. Axioms (Const) (Proj), and (Abst) of TRCP are replaced with the
axiom scheme “(λxy)(T )(x, y) = T”; axioms which contain π1 and π2 replace
these with (λxy)(x) and (λxy)(y) respectively. It is clear that axioms (Const),
(Proj), and (Abst) are special cases of the axiom scheme provided, with suitable
definitions of π1, π2, Comp, and K[f ]; the Corollary to the Abstraction Theorem
shows that interpretations of all instances of this axiom scheme follow from the
axioms of TRCP .

We now note that it is “almost” possible to interpret TRCP in NFP . The
(failed) argument for this is essentially the same as the (complex) argument
for the interpretation of TRC in NF given in [1]. The constructions in this
argument are clearly valid in NFI ; one apparent problem with validity in NFP
is the occurrence of references to the set of natural numbers in the construction
of the ordered pair of Quine and similar constructions. However, the relative
types of natural numbers used in the construction of the Quine ordered pair (and
the analogous constructions) are low enough that all references to “elements of
the set N of natural numbers” can be replaced with references to “elements of
elements of the set USC[N ] of singletons of natural numbers”; USC[N ] is a set
in NFP . The fatal problem arises in the definition of the map Push from the
universe onto the set of functions; we do not know how to show that this map
exists in NFP (although it can be shown to exist in NFI ). There may be ways
to evade this difficulty, but we have not found one.

3 The Attempt to Interpret NFP in TRCP

The attempted interpretation of NFP in TRCP is also analogous to the inter-
pretation of NF in TRC given in [1], but we give it in more detail. We use the
terms π1 and π2 to represent the truth-values True and False respectively. We
refer to a term f such that “f(x) = π1 or f(x) = π2 for all x” is a theorem
as a “characteristic function term”, and use characteristic function terms to
represent sets in the natural way.

We represent the logical operations of negation, conjunction, and disjunction
by the symbols ∼, &, and ‖, respectively.

We now construct characteristic function terms “{x|φ}” for certain formulae
φ and variables x, which will not contain x and will satisfy {x|φ}(x) = π1 if φ and
{x|φ}(x) = π2 if ∼ φ. We define {x|T = U} as (λx)(Eq(T,U)); we define {x| ∼
φ} as {x|{x|φ}(x) = π2} and {x|φ&ψ} as {x|({x|φ}(x), {x|ψ}(x)) = (π1, π1)};
we define {x|(∀y)(ψ)} as {x|{y|ψ} =K[π1]}. Of course, these definitions succeed
only under certain conditions.

We apply a technique adapted from the proof of the Abstraction Theorem
for full TRC in [1]: K[(f, g)] = (K[f ],K[g]) and K[f(g)] = Comp(f,K[g]) are
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easy theorems of TRCP , which can be used to eliminate all occurrences of the
K-constructor other than iterated applications to atomic terms. This gives us
the ability to define abstracts under more general circumstances. If x appears
with the same non-negative type n wherever it appears in T and U , and does not
appear in the scope of a K-constructor in the simplified form Kn[Eq(T,U)]′ of
Kn[Eq(T,U)], then it is possible to define (λx)(Eq(T,U)) and thus {x|T = U}
as (λx)(Eq(Kn[Eq(T,U)]′,Kn[π1])). The abstracts used in defining {x| ∼ φ} and
{x|φ&ψ} always exist, subject to inductive hypothesis, but this technique may
be used to extend the scope of the definition of {x|(∀y)(ψ)}. We call a condition
φ “stratified” if we can assign a type to each variable and a type to each term
appearing in the formula (the two sides of an equation are assigned the same
type) in such a way that the type of each variable relative to each term in the
formula in which it appears is the result of subtracting the type assigned to the
term from the type assigned to the variable. We claim that for any stratified
condition φ in which neither the variable x nor any bound variable nor any
K-construct having x or a bound variable in its scope is assigned type higher
than that of x (the assigned types can clearly be extended to every subterm of
a term in the formula), {x|φ} can be defined. For each subformula {x|T = U},
the conditions ensure that (λx)(Eq(T,U)) can be defined as indicated in the
previous paragraph. If x does not occur in T or U , one must nonetheless modify
types as indicated in constructing (λx)(Eq(T,U)) so that the relations between
the types of variables in the interpretations of different subformulae is correct
(the assigned types of T and U are used to determine the type of the absent
occurrences of x). The constructions for formulae constructed by negation and
conjunction succeed if they succeed for the subformulae. The construction for
{x|(∀y)(ψ)} may run into difficulty if {y|ψ} does not exist due to y having too
low a type. The trick is that if the type of y is n−m, one may convert ψ to a form
in which y appears only in the context Km[y] (using the simplification above
to eliminate complex K-constructs and using (Const) to introduce additional
applications of K where necessary). By hypothesis on types of variables and
K-constructs, Km+1[y] will not occur. Replace Km[y] by a variable z not found
in ψ; the set {z|ψ} is defined by inductive hypothesis (induction on length of
formulae), and may more instructively be called {Km[y]|ψ}. {x|{y|ψ} =K[π1]}
may be defined as {x|{Km[y]|ψ} =Km+1[π1]}, where abstraction succeeds. We
can then give a “natural” interpretation of “x ∈ y” as “y(x) = π1&(∀z)(y(z) =
π1 ‖ y(z) = π2)”. An formula φ which translates a formula of NFP which is
stratified and contains no bound variable with type higher than that of x will
satisfy the conditions given above for existence of {x|φ}.

We thus successfully obtain (as in [1] for NF ) an interpretation of the com-
prehension scheme of NFP but without extensionality; each object which is not
a “characteristic function” is interpreted as an “ur-element”. In [1], we solved
this problem by defining a bijection Push from the universe onto characteris-
tic functions and redefining “x ∈ y” as “Push(y)(x) = π1”. The interpreted set
“{x|φ}” is the inverse image under Push of the characteristic function of the col-
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lection of objects satisfying the translation of the formula φ. We observed that
each TRC function f can be sent to the function Setof(f) = {(x, y)|f(x) = y}.
The function Setof exists in TRCP as well. We could then define Pushset, the
inductive closure of the collection of non-characteristic functions under Setof,
and define Push as being Setof on elements of Pushset and the identity else-
where. The problem here is that (the characteristic function of) Pushset cannot
be defined in TRCP for the same reason that N cannot be defined in NFP ; it is
defined using a quantifier over all characteristic functions of sets containing the
non-characteristic functions and closed under Setof, and these would be assigned
the same relative type as that of the set whose characteristic function is being
defined. It follows that Push cannot be defined in TRCP in the way that it
was defined in [1]. Note that the interpretation of NFP in TRCP or vice versa
succeeds in the presence of the local version of the assertion “There is a bijection
between the class of functions and the class of characteristic functions”; if there
is such a bijection which is predicatively definable, the two theories are equiv-
alent. An assumption sufficient to establish the existence of such a bijection is
the Schroder-Bernstein Theorem, which apparently cannot be proven in NFP .

4 TRCI Introduced

We now introduce the theory TRCI . TRCI extends TRCP . It has an additional
term construction: Abst[f ] is a term if f contains no variable of non-negative
type and contains no Abst construct except as a subterm of a subterm of negative
type; f will be a substitution instance in TRCI of a term of TRCP containing
no variable of non-negative type. If Abst[f ] has relative type n, so does f . The
additional axiom scheme of TRCI defining the behaviour of Abst is

(Abst′): Abst[f ](g) = f(K[h])(g(h))

The argument for equivalence between TRCI and NFI succeeds. To see this,
we first need the additional

Abstraction Theorem for TRCI : Let T be a term of TRCI containing no
variable of positive type, and let x be a variable which occurs in T with
no type other than 0 and does not appear within the scope of any Abst
construct or within the scope of any K-construct which itself is within a
K-construct. Then (λx)(T ) exists as above.

Proof of the Abstraction Theorem for TRCI : Use the technique given above
to eliminate all complex K-constructs. The only original case of the
inductive definition of (λx)(T ) which needs to be modified is the case
(λx)(U(V )), in which it is possible that U may contain K[x] with type 0
and not within the scope of any K-construct or Abst construct, so that
U can be expressed in the form f(K[x]) for some f (using Abstraction
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for TRCP), and (λx)(U(V )) can be defined as Abst[f ]((λx)(V )) (f will
clearly contain no variable of non-negative type); it needs to be observed
that (λx)(K[A]) must still be K[K[A]], because the only way for it to con-
tain x would be if A were x or an iterated K-construct on x, in which
case x would have the wrong relative type. (λx)(Abst[U ]) is a trivial case,

since U cannot contain x.

Note that the Abstraction Theorem for TRCI is not stronger than the Ab-
straction Theorem for TRCP , which we will still need to use (with the additional
condition that the bound variable not appear in an Abst construct).

5 Equivalence of TRCI and NFI

We observe that TRCI can be interpreted in NFI . The point which needs to be
established is that the additional functions defined in (Abst′) can be interpreted
in NFI . The place where NFI comprehension is needed is in establishing the
existence of the functions Abst[f ](g) for f a constant of TRCP and g any
function; since Abst[f ](g)(h) is supposed to be f(K[h])(g(h)), a bound variable
representing K[h] will be needed at the same type as that of Abst[f ](g). The
dependence of Abst[f ](g) on g is predicative. As in NFP , the construction of
the Quine ordered pair and related structures presents no difficulty (in fact,
no more difficulty in this case than in NF ), and, as we remarked above, the
definition of Push goes through in NFI just as in NF .

We demonstrate that TRCI interprets NFI . Let φ be a stratified condi-
tion in the language of TRCP in which no occurrence of a variable or of a
K-construct with a variable in its scope has type more than one greater than
the type of x. Convert φ to a form in which x occurs only in the context K[x],
and define {K[x]|φ} using the comprehension techniques of TRCP–note that
{x|φ}(x) = {K[x]|φ}(K[x]) ={K[x]|φ}(K[x])(π1,π2) can be satisfied by defining
{x|φ} as Abst[{K[x]|φ}](K[(π1,π2)]) ({K[x]|φ} cannot contain any variables of
non-negative type). This gives us the ability to interpret NFI comprehension.
The condition “Push(y) = z” can be expressed in the language of TRCP using
variables one type higher than the type of y: “y belongs to each set A which con-
tains the non-characteristic functions and is closed under Setof and Setof(y) = z,
or y fails to belong to some such set and y = z”. Define “x ∈ y” as “for some z,
z(x) = π1 and ‘Push(y) = z’ ”. Let φ be the translation of a stratified, “mildly
impredicative” condition on x. The highest type of variable mentioned is two
higher than the type of x, occurring in translations of membership statements
“u ∈ v” where v is of type one higher than x (and thus a parameter). These
can be eliminated by eliminating reference to the parameter v in favor of refer-
ence to (the variable representing) Push(v): i. e., replace each formula “w(u)
= π1 & ‘Push(v) = w’ ” with “w(u) = π1”, the parameter w replacing the pa-
rameter v, wherever v is of the highest possible type; this is legitimate because
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“Push(y) = z” is provably a bijective relation. Once this elimination is carried
out, there are no variables used of type more than one higher than the type of
x, and {x|φ} can be defined using the procedure indicated above.

We have established that the theories TRCI and NFI are precisely equivalent
in consistency strength and expressive power.
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