A Strong and Mechanizable Grand Logic*

M. Randall Holmes

Boise State University

Abstract. The purpose of this paper is to describe a “grand logic”,
that is, a system of higher order logic capable of use as a general pur-
pose foundation for mathematics. This logic has developed as the logic of
a theorem proving system which has had a number of names in its career
(EFTTP, Mark2, and currently Watson), and the suitability of this logic
for computer-assisted formal proof is an aspect which will be considered,
though not thoroughly. A distinguishing feature of this system is its rela-
tionship to Quine’s set theory NF and related untyped A-calculi studied
by the author.

1 Introduction

The theory we develop here will be referred to as W, after the current name
“Watson” of the theorem prover in which it is implemented (for a more through
discussion of this prover see [8]). The notation of the system will be presented
just as it is presented to (and by) the theorem prover.

The roots of this logical system are in Quine’s set theory “New Foundations”
(NF) of [10], but it cannot be described simply as an implementation of NF.
NF' is not known to be consistent; the grand logic presented here is (partly)
based on the variation NFU of NF presented by Jensen in [9], which is known
to be consistent and suitable for applications (see [7] for a development). NF
and NFU are set theories; W is an untyped A-calculus. NF and NFU are usually
presented using standard first-order logic; this system interprets the notions of
propositional and predicate logic in terms of its own rather different primitives.

2 Syntax

The formal theory W presented here is an equational theory. All statements of W
are equations between terms (intended for use as rewrite rules) and the focus of
the theory is on the structure of terms rather than on the structure of proposi-
tions. Terms representing truth values stand in for propositions, and the usual
notions of propositional and predicate logic are expressed as operations on terms
representing truth values.

This section is devoted to the syntax of the language of W. First of all, if A
and B are terms, A = B is an equation (as statement of W); but the = operator

* The author gratefully acknowledges the support of US Army Research Office grant
DAAGH5-98-1-0263

also occurs as a term constructor with the natural meaning (A = B is a term
which is equal to true if A = B holds and equal to false if A = B is false). The
overloading of = should always be easily disambiguated in what follows.

Any string of positive length consisting of characters taken from the sets of
letters, digits, and the special characters 7 and _ is an atomic term.

Atomic terms are of four kinds:

numerals: Any atomic term consisting only of digits is a numeral. (This cat-
egory may be regarded as subsumed under “constants” below: it is not of
special logical interest).

bound variables: An atomic term consisting of ? followed by a non-zero-initial
numeral is a bound variable.

free variables: An atomic term beginning with ? and containing another non-
numeric character is a free variable.

constants: An atomic term not beginning with 7 and containing a non-numeric
character is a constant.

Before constructions of composite terms are introduced, a preliminary dis-
cussion of kinds of operator is needed.

operators: A string of special characters (not listed, but excluding all charac-
ters found in atomic constants and excluding paired forms such as quotes,
braces, brackets, and parentheses) is an operator. In particular, @ and @! are
operators representing two different kinds of function application, and , is
the ordered pair constructor. Also, a string of alphanumerics preceded by a
backquote ¢ is an operator.
It is important to note that an operator is not itself a term. We oversimplify
by stipulating that each operator is either prefix or infix, but not both (there
is some overloading in the prover). (Operators are declared infix or prefix in
particular theories.)

We now present the constructions of composite terms.

prefix terms: A prefix term counsists of a (prefix) operator followed by a term.

abstraction terms: An abstraction term (a function) consists of a term en-
closed in brackets. (Abstraction terms implement A-terms, and standard A-
notation will sometimes be used).

parenthesized term: A term enclosed in parentheses.

infix terms: An infix term consists of a atomic, abstraction, or parenthesized
term, followed by an (infix) operator, followed by a term.

case expressions: A case expression consists of a parenthesized term, followed
by |1, followed by a parenthesized term, followed by ,, followed by a term.
The special operator | | may only occur in terms of this form.

reduction of parentheses: Parentheses around an atomic term or abstraction
term may always be removed. Parentheses around an infix term or case
expression may be removed except when it is the left subterm of an infix
term or one of the two leftmost subterms of a case expression. If a term is
obtained from another term by reduction of parentheses (or by the addition
of parentheses for clarity), it is regarded as being the same term.

completeness of description: The class of terms is the intersection of all sets
containing all atomic terms and closed under the term constructions given
above.

This description of the syntax is based on the default order of precedence of
the Watson prover, in which all operators have the same precedence and group
to the right.

3 Equational Logic

The bedrock of the logic of W is equational logic. All statements in the language of
W are equations, understood to be implicitly universally quantified over the free
variables occurring in them. All free variables are untyped, with an exception
described below (in the discussion of class abstraction).

In this section we restrict ourselves to the sublanguage of the language of
W which excludes bound variables. (Abstraction terms without bound variables
may occur; these represent constant functions.)

We define substitution for the restricted language without bound variables: if
A, T are terms and ?x is any variable, we define A{T/7x} as the result of replacing
all occurrences of the variable ?x with (T). (Of course, the parentheses may then
often be reduced away).

The basic rules of the equational logic of W are as follows:

reflexivity: For any term A, A = A is a theorem.

symmetry: If A = Bis a theorem, then B = A is a theorem.

transitivity: If A = B is a theorem and B = C is a theorem, then A = C is a
theorem.

localization: If A = B is a theorem and C is a term then C{A/?x} = C{B/7x}
is a theorem. (?x being any free variable).
specification: If A = B is a theorem and C is a term then A{C/?x} = B{C/7x}

is a theorem. (?x being any free variable).

These rules will need to be refined when bound variables are introduced.

4 The Logic of Terms Defined by Cases

We now consider the first part of the grand logic W, corresponding to proposi-
tional logic and the logic of identity.

We introduce the predeclared constants true and false, representing the
truth values.

In a case expression T || U , V, we refer to the subterm T as the hypothesis
of the case expression and to the subterms U and V as its branches. The intended
meaning of the term (T = U) || V , Wis “if T = U then V else W’; when T is
not an equation, T || U, V is intended to have the same meaning as (true =
™ |l U, V.

We introduce axioms governing the behavior of the special term construction
of “case expressions”.
The basic axioms are the following:

P1: ((?x = 7x) || ?y , 7z) = 7y

P2: ((true = false) || 7y , 7z) = 7w

HYP: ((ra = 7b) || (A{?a/7x}) , B) =
((?a = 7o) || (A{?b/?x}) , B)

DIST: (A{((7a = ?b) || ?c , ?d)/?x}) =
(ra = 7b) || A{?c/?x} , A{?d/7x}

The axioms P1 and P2 implement special cases of our preformal understand-
ing that a case expression will be equal to its first branch when the hypothesis is
true and to its second branch when the hypothesis is false. In an expression (A =
B) || T , U, itshould be clear that we can freely replace A with B or vice versa
in the context T without affecting the value of the term: this is captured by the
axiom HYP. The name is taken from the idea that this implements “reasoning
under hypotheses”. The axiom DIST allows the “distribution” of the hypothesis
of a subterm over a larger context.

It should be noted that HYP and DIST are axiom schemes rather than
single axioms (thanks to a referee for pointing out that I needed to say this!)
They could in principle be replaced in almost all applications by single axioms
of the form

*HYP: ((?a = ?b) || (?A @! ?a) , ?B) =
((?a = 7b) || (?A @' ?b) , 7B)

*DIST: (?A @! ((?a =7?b) || ?c , 7d) =
(?7a = 7b) || (7?4 @! ?c) , (?A Q! ?d)

where (as noted above) @! is a function application operator. In earlier versions
of the prover, axioms of the latter forms were actually used; applying such axioms
to get each instance of the full schemes involved A-abstraction and S-reduction.
In the current version of the prover, there is built-in support for the application
of the schemes, not involving any use of the function machinery of the prover,
so it seems more natural to present the schemes.

The axiom set actually built into Watson is slightly larger, but we want
to emphasize the extreme simplicity of the logic of case expressions presented
here. The additional content provided by Watson can be presented as the pair
of axioms:

EQ: (7a = ?b) = (?a = ?b) || true , false
GH: ((true = ?x) || ?y , ?72) = ?x || 7y , 7z

These can be regarded as providing implicit definitions of terms with the
operator = and of case expressions with hypotheses which are not equations.
Though these are useful constructions, it is worth noting that they are not an
essential part of the underlying theory.

The following propositions are easy consequences of the six axioms given so
far:

El: (7a = 7a) = true

E2: (true = false) = false
B1: (true || 7x , ?7y) = 7x
B2: (false || 7x , ?7y) = 7y

Watson has E1 and B1-2 as built-in assumptions instead of P1-2; E2 is
provable from these and EQ, GH, as are P1-2.

The axiom HYP allows substitutions to be made in the left branch of the
hypothesis under the locally valid assumption that the hypothesis is true; it
may seem that we have neglected similar things one can do in the right branch
using the assumption that the hypothesis is false, but this is not the case! We
present three theorems, the last of which captures the use of negative hypotheses:

TO: ((?a = 7b) || ?x , 7x) = 7x

T1: ((?a = 7b) || A{((?a = ?b) || ?x, ?y)/?v} , 72)
(?a = 7b) || A{?x/7v} , 7z

T2: ((?a = 70) || ?x, A{((?a = 7b) || ?y , ?2)/7v})
(7a = 7o) || ?x , A{?z/7?v}

While the axiom HYP allows us to rewrite only in the left branch of a case
expression, the theorems T1 and T2 allow rewriting of into both the left and
right branches of case expressions, though of a more restricted nature.

We omit the easy proofs of TO and T1. We do prove T2.

(?a = 7b) || 7x, A{((?a = 7b) || 7y , 7z)/7v} = (EQ)

((?a = 7b) || true , false) || 7x ,
A{(((?a = ?b) || true , false) || ?y , 7z)/?v} = (substitution)

(?Pu || 7z, A{CPu || ?y , 72)/7v})
{((?a = ?b) || true , false)/7u} = (DIST)

(?7a = 7b) ||
(?u || 7z, A{(?u || 7y , ?2)/?v}){true/7u}),
(7u Il 7z, A{C?u || 7y , ?2)/7v}){false/7u} = (substitution)

(7a = 7o) ||
(true || ?7x , A{(true || ?y , ?2)/7v}) ,
(false || 7x , A{(false || ?y , ?z)/7v}) = (Bl and B2)

(7a

7o) || 7x , A{(false || 7y , ?2)/7v} = (B2)
(7a = 7b) || ?7x , A{?z/7v}
which completes the proof of T2.

Though we regard the formulation using DIST and HYP as more mathe-
matically elegant, it should be noted that taking HYP and TO0-2 as primitive

assumptions is equivalent, and this is the axiomatization which is effectively
hard-wired into the prover. We omit the short proof of DIST from TO0-2.

Propositional connectives are readily defined using expressions defined by
cases. We give only the definition of negation as an example.

Definition: ~T is defined as T || false, true

It is worth remarking that in case T is neither true nor false, this definition
treats it in the same way as false (and so ~T is equal to true in this case).
Similar considerations apply to the other propositional connectives.

We now prove a completeness theorem for the logic of case expressions in its
intended interpretation.

A theory in the language of W is an set of equations between terms in the
language of W (with some fixed set of constants and constant operators), closed
under the application of the rules of equational logic (reflexivity, symmetry,
transitivity, localization and specification).

Definition: If M is a set with more than one element, an environment for M
relative to a theory is a map from the free variables of the language of W to
elements of M.

An interpretation of the theory M is a map which takes any pair consisting
of an environment for M and a term to an element of M.
An interpretation [is said to be sound for a theory if the following conditions
hold:
1. If o is an environment and v is a free variable, then I(o,v) = o(v).
2. If t and u are terms such that ¢ = u is an equation in the theory, and o
is any environment, then I(o,t) = I(o,u).
3. I(o,true) # I(o, false) for any o.
4. If ¢ is a term containing no free variables, then I(o,t) = I(o’,t) for any
environments o and ¢’.

‘We now prove a

Completeness Theorem: Any theory which does not have true = false as
an element has a sound interpretation in a set M which is at most countably
infinite.

Proof: We construct an interpretation whose range is the set of equivalence
classes of variable-free terms of the language of the theory under a suitable
equivalence relation.

Terms T and U will be equivalent if they are provably equal in the theory.
This is not sufficient to define the desired equivalence relation, because the
theory may not be complete (it may not allow the decision of all equations).
To define the complete theory, enumerate all equations between variable-
free terms in its language. Consider the first equation T = U on this list
with the property that neither T = Unor ((T = U) | |true,false) = false
is a theorem. It is straightforward to establish that T = U is a theorem
iff ((T =71U) || true , false) = true is a theorem, and so that ((T =

U) | |true,false) = false cannot both be theorems (because symmetry
and transitivity of equality would force true = false to be a theorem, con-
trary to hypothesis).

We claim that adding T = U to the theory and closing under the application
of the rules of equational logic will still produce a consistent theory (true =
false will not belong to the extended theory). Suppose otherwise: then we
would have a proof

true = V1 = ... Vn = false

with each step justified by an element of our theory or the equation T = U
(possibly combined with an application of the rule of localization).
We could then modify this proof to the following form:

(T=U) | |true,false =
(T=U) | |V1,false

(T=U) | |Vn,false
(T=U) | | false,false = (TO)
false

Each step of this proof would be valid in the original theory: steps using
equations of the original theory obviously remain valid and the steps using
T = U would be justified by applications of the axiom HYP of the logic of
case expressions. So the original theory would prove ((T=U) | |true,false)
= false, which we have seen is impossible.

We can then repeat this process to obtain a complete theory (one which
decides every equation). The resulting complete theory allows us to define a
sound interpretation I in the set of equivalence classes of variable-free terms
of the language; I(o,t) will be the equivalence class of the term obtained
from the term ¢ by replacing each free variable v occurring in ¢ with some
element of the equivalence class of terms o(v). Since the language itself is
no more than countably infinite, any partition of the set of terms of the
language is likewise no more than countably infinite. The proof is complete.

It follows from the Completeness Theorem and the definability of notions
of propositional logic and the logic of identity in the logic of case expressions
given here that this logic codes all valid reasoning in propositional logic and the
logic of identity (as claimed above). Complete implementations of propositional
logic reasoning in several styles have been made in Watson, using the principles
described here.

The definition of another version of this logic of case expressions and the
proof of its completeness are found in our unpublished [4].

We are well aware that the use of an if ...then...else... construction as a
primitive in the definition of logical connectives is not novel. We have not seen it

widely advertised that the four basic axioms (which we repeat here in standard
notation for emphasis) together with rules of equational logic are sufficient to
provide a basis for propositional logic and the logic of identity in an untyped
context.

P1: (ifz = xthenyelsez) =y

P2: (if true = falsethenyelsez) =z

HYP: (ifa = bthen F(a)elsec) = (if a = bthen F(b) elsec)
DIST: F(ifa = bthencelsed) = (if a = bthen F(c) else F(d))

5 Bound Variables and Substitution

We introduce the notation for variable binding used in the prover, which is a
system of the sort introduced by de Bruijn (in [2]) with “nameless dummies”,
though it is not the usual scheme of “de Bruijn indices”. We also introduce
the formal definition of substitution for this system and extend the rules of
equational logic to the language as extended with bound variables.

The construction of functions is the only variable binding construction in
the logic of Watson. There are two different kinds of function application, set
function application, represented by the infix operator @, and class function
application, represented by the infix operator @!. The same variable binding
construction builds both set and class functions; there is a syntactical constraint
on permitted occurrences of @! in functions, but no corresponding restriction
on permitted occurrences of @. The application of the S-reduction rule is more
restricted for the @ operator than for @!, as will be discussed in the next section.

We recall that an atomic term consisting of ? followed by a non-zero-initial
numeral is a bound variable.

An occurrence of a term in Watson is said to have “level n” if it occurs as
a subterm of n abstraction terms (if it is enclosed in m pairs of brackets, on
a typographical level). The bound variable ?n cannot occur sensibly at a level
lower than n (where the two occurrences of “n” in different type faces represent a
positive integer and its numeral). The intended semantics is that an abstraction
term [T] occurring at level n — 1 represents a A-term (a function) in which
the bound variable is 7n: so for example the term [?1] at level 0 stands for the
function (Az.z): the term [[?71]] (at level 0) is (Az.(Ay.x)), the map which sends
x to the constant function of = (the K combinator) while [[?72]] is (A\z.(Ay.y)),
the constant function whose value is the identity function. The term [[73]] has
no semantics at level 0 except as a subterm of a larger term; we cannot see the
bracket that binds the bound variable 73.

We formally qualify the notion of term to facilitate discussion of subterms
of nontrivial level: a “level n term” is a term in which each bound variable 7m
occurs enclosed in at least m — n brackets. Note that any level n term is also
a term of level m for each m > n, though the semantics of typographically
identical terms may be different at different levels. Level 0 terms are the terms
which have sensible semantics in a top-level term; level n terms are those terms

which can appear in a level 0 term inside n enclosing brackets. In a term being
considered as a level n term, we will speak of subterms enclosed in m brackets
as occurring at level m + n (tacitly assuming that there are n more brackets
somewhere in a larger context).

This scheme is closer to the usual variable binding scheme than the famil-
iar scheme of “deBruijn indices” (we have seen the scheme we use referred to
as “deBruijn levels”): a term in the usual A-calculus can be converted to this
form by renaming the outermost bound variables to 71, the next-to-outermost
bound variables to 72, etc., then replacing all the binders (Az....) with brack-
ets. An advantage of this scheme over deBruijn indices is that instances of the
same bound variable always look the same; a disadvantage is that terms with
bound variables will have to have the bound variables renumbered when they
are substituted into a context at a different level.

Practical experience with using this system suggests that as long as brackets
are not too deeply nested the notation is intelligible. In the current Watson
theory package, an operator . is provided with the defining axiom (?7x.7%7y) =
7y (ignore the first argument); a tactic is provided which converts every bracket
term [T] in the current context to the form [?n.T], where ?n is the appropriate
bound variable. There is a converse tactic to get rid of such annotations. The
development of a tactic of this kind under Watson is easy, and it restores the
advantages of the usual variable binding notation with a binder at the head
of the term (if one doesn’t mind having the names of one’s bound variables
chosen for one). Note that the introduction and removal of such annotations is
automated; if a user introduces incorrect annotations by hand, they are easily
checked and corrected; it is exactly the fact that the semantics of the annotations
are trivial which makes it possible for prover tactics (which are not allowed to
change a term in a way which affects its reference) to correct the annotations
where necessary.

On a formal level, the introduction of variable binding requires a change in
the definition of substitution and an extension of the rules of equational logic.

If A and B are terms of the same level n and ?x is a free variable, we define a
term A{B/7x} of the same level n. Where m and n are numerals with m > n and
B is a level n term, we define B{m/n} as the term which results when each bound
variable 7i in B with index ¢ > n is replaced by 7j with index j = ¢+ m — n.
(A variable which is bound by a bracket in B (a 7i with ¢ > n) will no longer
be associated with the correct bracket if the term B is substituted into a context
enclosed in m brackets instead of n brackets: it will need to have its numbering
shifted by m — n.) The refinement in the definition of A{B/?x} is that each
occurrence of ?x needs to be replaced with (B{m/n}) rather than simply (B),
where m is the level of that occurrence of 7x.

The definition of A{B/7x} can be extended to the case where the level n of B
is greater than the level [of A, just in case no occurrence of the variable 7x in
A is at a level less than n. The form of the definition is exactly the same in this
case; this extension is needed for the formalization of the rule of localization.

We present extended axioms of equational logic for W, defining notions of
theorem at each level n. Of course, our true theorems are the level 0 theorems.

reflexivity: For any level n term A, A = A is a level n theorem.

symmetry: If A = Bis a level n theorem, then B = A is a level n theorem.

transitivity: If A = Bis a level n theorem and B = C is a level n theorem, then
A = Cis a level n theorem.

localization: If A = B is a level n theorem and C is a level m term in which
all occurrences of ?x are at level n or higher (so n > m) then C{A/7x} =
C{B/7x} is a level m theorem. (?x being any free variable). (notice that the
definition of substitution handles any needed renumbering of bound variables
in the equation A = B that is applied).

specification: If A = Bis alevel n theorem and C is a level n term then A{C/?x}
= B{C/7x} is a level n theorem. (?x being any free variable).

level conversion: If A = B is a level n theorem and m > n, then A{m/n} =
B{m/n} is a level m theorem.

The harmonization of this system with the logic of case expressions given
above amounts to recognizing that the new definition of substitution needs to
be used. There is no essential change in the proof of completeness; it goes the
same way mod renumbering of bound variables in the equation T = U mentioned
in that proof when used at different levels.

We now develop the defining axiom of the class map application operator @!.
Where 7n is a bound variable, T is a level n term and U is a level n — 1 term,
we define T{U/?n} as the level n — 1 term which results if all occurrences of 7n
in T are replaced by (U) and all occurrences of bound variables ?i with ¢ > n in
T are replaced by ?7j with j =4 — 1. We can then state the rule of S-reduction
in the very natural form:

(class) f-reduction: ([T] @! U) = T{U/?n} is a level n — 1 theorem for each
level n term T and level n — 1 term U.

Another form in which this could be stated (without introducing new nota-
tion, but that is its only merit!) is “([T{n/(n-1) }{?n/?x}] @! U) = T{U/7x}
is a level n — 1 theorem for any level n — 1 terms T and U”.

So far we appear to have axiomatized untyped A-calculus, which is incompat-
ible with the presence of functions without fixed points, such as negation, which
we can already define. Paradox is avoided by a restriction on the formation of
abstraction terms containing the operator @!. We define the head of a term and
its number of arguments as follows: if a term T is not of the form U @! V, then
it is its own head and has 0 arguments; if a term T is of the form U @! V, then
its head is the head of U and it has one more argument than U. We define an
n-function as follows: a term not of the form [T] is a O-function and a term of
the form [T] is an (n + 1)-function iff T is an n-function. The restriction on the
formation of abstraction terms is that if a term with n arguments appears as a
subterm of an abstraction term, its head must be either an n-function or a free
variable. Notice that under this condition any heads of subterms of abstraction

terms which are n-functions for n > 0 can be eliminated by [-reductions. For
example, this restriction forbids the formation of fixed points of arbitrary oper-
ators F by self-application of abstraction terms [F @! (7?1 @! ?71)], because 71
@! 71 is prevented from occurring as a subterm of an abstraction term.

6 The Theory of Class Abstraction

We have seen above that the operations of propositional logic can be interpreted
in the logic of case expressions. We now use the class function machinery of
Watson to interpret quantification.

The essential idea is that the universal quantifier can be interpreted as the
function forall defined as [?1 = [truel] (i.e., (Az.(x = (A\y.true))); there is
nothing new about this ideal). If a formula ¢ is represented by a term T, then
the formula (Vz.¢) will be represented (mod technicalities about the variable
binding) by [T] = [true] = forall @! [T]. If the formula ¢ is represented by
a term T, the formula (Jx.¢) will be represented by the term ~([T] = [false]).
So we define forsome as [~(71=[false])]. (the definition of forsome is not
quite as nice as that of forall, because it does not mean quite what one would
like when T takes on values which are not truth-values). In any event, forall
@ [T] and forsome @ [T] will code the intended quantified statements when T
codes a formula (and so has boolean value).

We now demonstrate that first order logic with equality on infinite domains
is captured exactly by the logic of case expressions augmented with our scheme
of class functions. The precise sense in which this is true is as follows: we can take
any countably infinite model of a first order theory and introduce a definition
of the class function abstraction and application operations which will satisfy
the formal rules of this system and under which the internal definitions of the
quantifiers will succeed.

Take any first order theory T (with equality) with a finite or countably
infinite set of primitive predicates, constants and function symbols and having
a countably infinite model M. We indicate how to represent the machinery of
class abstraction within M in such a way that the definitions of the quantifiers
in terms of class abstraction succeed.

We partition the countably infinite set M into a sequence of countably infinite
subsets M; indexed by the natural numbers.

We need to translate the language of T" into the language of W. Select two
distinct elements of the model M as referents of the terms true and false.
Propositions of the language of T' will be interpreted as terms with values true
or false. Introduce constants (in the sense of W) translating each constant of T
Introduce operators translating each predicate and function symbol of T' (equal-
ity is translated by =). Unary predicates or function symbols will correspond
to prefix operators, and binary predicates or function symbols will correspond
to infix operators. If there are operators of ternary or higher arity, these can
be accomodated by introducing the pair operator (,); for example, an atomic
sentence with a ternary predicate symbol like Rxyz would have the translation

x ‘R y , z. The pair operator can represent any injection from M x M into
M.

We define a class Ly of terms in the language of W containing interpretations
of all terms and quantifier-free propositions of the language of T'. L contains all
free variables and translated constants of T, plus true and false. It is closed
under the construction of terms with (translated) predicates and function sym-
bols of T' (plus = and ,) and the construction of case expressions (used to handle
propositional connectives). It is the smallest class of terms satisfying these clo-
sure conditions.

For each term T in Ly which contains no free variable other than a fixed
variable ?x, construct the abstraction term [T{1/0}{?1/7x}] (after this point,
we abbreviate this as [T{?1/7x}]). These abstraction terms are permitted in
W, because no such term T will contain any occurrence of @!; this will remain
true throughout the iterative construction we are about to carry out. Each such
abstraction term corresponds in a natural way to a function from M to M; we
assign an element of M, as the referent of each such abstraction term, assigning
the same referent to terms which correspond to the same function. This will
succeed because there are clearly no more than countably infinitely many such
terms.

Our intention is now to augment our language by adding all the abstraction
terms we have just constructed as new constants. We extend the language Lo
to include all abstractions over terms of Ly (notice that this is not the same as
taking the closure of Ly under the abstraction term construction!); we call this
extended language L, (it is clearly harmless to allow free variables in abstraction
terms; the reference of an abstraction term with free variables in it will be
determined once the reference of each free variable is determined). Notice that for
each term T of Ly which codes a proposition ¢, we have [T{?1/?x}] = [truel,
which codes (Vz.¢), as a term of L;; the language L; allows us to express some
quantified sentences.

We then proceed in the same way through steps indexed by the natural
numbers. When the language L, has been constructed, we consider the set of
all terms T of L,, which contain no free variable other than ?x. We construct
abstraction terms [T{?1/?x}] for each such term. Each such abstraction term
corresponds to a function from M to M. Some of these terms will correspond to
functions with the same extension as an abstraction term already defined; assign
these the same referent as the term(s) with which they are coextensional. Assign
to each term which has a “new” extension a referent in M, (none of whose
elements will have been used yet as referents for abstraction terms), assigning
terms with the same extension the same referent. It will be possible to do this
because the class of abstraction terms being considered is no more than countably
infinite. We extend the language L,, with all abstraction terms [T{?1/7x}] for
T a term of L,, obtaining the language L, 1; we are able to determine the
reference of any term of L, 1 once the reference of any free variables in the
term is given. Notice that if any proposition ¢ is coded by a term T of L, the
proposition (Vz.¢) will be coded by the term [T{?1/?x}] = [truel] in L,4;.

We consider the language L, the union of all the languages L,,. We aug-
ment L, with the class application operator @!, using the S-reduction scheme
to determine the meaning of terms [T] @! U and assigning a default value to
each term T @! U where the referent of T is not the referent of any abstraction
term. L, allows us to abstract freely over terms which do not contain @! (this
should be clear from the construction); abstraction over terms with a subterm
with n arguments and head an n-function makes sense because the occurrences
of @! in such subterms can be eliminated by repeated [(-reduction, obtaining
an abstraction term provided by L, ; abstraction over terms with a subterm
with n arguments and head a free variable makes sense as long as we stipulate
that such free variables are implicitly typed as n-functions (the prover enforces
this). So the abstraction terms allowed by W are all interpretable, since the ab-
straction terms in L, are interpretable. Note further that L, although we have
only directly interpreted quantfier-free sentences of T', actually provides indirect
interpretations for all quantified sentences of T

This discussion establishes that the notions of class abstraction can be added
harmlessly (as a conservative extension) to any first-order theory with an infinite
model. It further needs to be shown that the deductive machinery of the theory of
class abstraction is strong enough to recover the usual properties of quantifiers.
This is best seen by pointing out that both of the usual rules for universal
quantifiers can be emulated in the theory of class abstraction:

(forall @ [T]) = true premise

([T] = [truel]) = true definition of forall

[T] = [truel simple case expression reasoning
([T] @ 7x) = [true] @ 7x localization

T{7x/71} = true beta-reduction on both sides

demonstrates universal instantiation.

T = true level O theorem (premise)
T{1/0} = true level 1 theorem,

by level conversion
T{1/0}{?1/7x} = true level 1 theorem, by specification
[T{1/0}{?1/7x}] = [truel level O theorem, by localization
forall @ [T{1/0}{7?1/7x}] definition of forall

demonstrates universal generalization.

Universal generalization and universal instantiation, combined with proposi-
tional logic which we know we can interpret using the logic of case expressions,
is enough to verify the rules for the existential quantifier.

Generalized predicates can be represented by free variables in this system
(free variables appearing as heads of application terms) but such free variables
cannot be replaced with bound variables, which prevents the representation of
quantification over predicates: there is no second-order logic here.

7 Higher Order Logic Via Stratified Abstraction

The “M-calculus” described in the previous section is a late innovation in the
logic of Watson. It is a quite weak system. Watson incorporates another much
stronger A-calculus, equivalent in strength and expressive power to a safe variant
of Quine’s set theory “New Foundations”, on which it is based. It is also equiv-
alent in strength to Church’s simply typed A-calculus with an axiom of infinity
(with refinements introduced below, it is somewhat stronger). It differs from the
Church system in being untyped. It can be noted here that the entire logic W
is untyped (except for the implicit typing of free variables appearing as heads
of curried class application terms). The stronger A-calculus is called “stratified
A-calculus”, and is discussed at length in [5], [6], and [7]. Here our treatment will
be briefer.

The stratified A-calculus is best understood initially via a related typed sys-
tem, a fragment of the simple type theory of Church (see [1]). The fragment
has types indexed by the natural numbers: type 0 is the type ¢ of individuals
(of unspecified character), and type n + 1, for each n is the type (n — n) of
functions from type n to type n. In addition, type 0 has at least two distinct
elements and each type satisfies the type identity (n X n) = n: i.e., each type
supports an ordered pair (Watson actually assumes (n x n) C n; surjectivity of
the pair is not assumed).

This type system shares a characteristic with Russell’s type theory of sets
which Church’s simple type theory does not have: all the types look the same in
a certain sense. If one raises each type index in an axiom of this typed A-calculus,
one obtains another axiom; it is easy to see from this fact that the same holds for
theorems. This suggests that it is reasonable to suppose that the whole structure
consisting of types 0,1,2... is isomorphic to the structure consisting of types
1,2,3... — or even that the type distinctions can be collapsed completely. This
is the same as the motivation for the modification of Russell’s theory of types
for sets which gives Quine’s set theory “New Foundations”.

It turns out that the ability to safely collapse a type theory using polymor-
phism in this way is sensitive to details of its axiomatization. If one assumes full
extensionality (that every object is a A-term) it is an open question whether the
collapse can be carried out (equivalent to the open question of the consistency
of NF). If one does not assume extensionality, one obtains a theory which is
known to be consistent and essentially equivalent to Jensen’s variation NFU +
Infinity of “New Foundations”, which has the same consistency strength and
expressive power as Russell’s theory of types or Church’s simple theory of types
(with infinity). This collapsing process is discussed in detail in [6].

The theory obtained when the type structure is collapsed is one-sorted — ob-
jects of the theory are not typed — but a notion of “relative type” still plays an
important role in the theory. The point is that when the type distinctions are
collapsed one still has only those instances of the scheme of S-reduction [T]@U
= T{U/71} which make sense in terms of the type scheme. This is vitally impor-
tant: one does not want to acquire instances of S-reduction like [~?71071]@7x
= ~7x07x, from which, if one defines R as [~71@71], one can deduce the dis-

astrous theorem R@R = ~ROR. But the abstraction term [~?71@71] is in some
sense illicit, because there is no way to type it sensibly in terms of the typed
system described above.

We now describe the way that these ideas are implemented in the logic W of
Watson. Each operator is supplied with “relative types” for its arguments (called
the left type and right type): if an operator % (infix for the sake of the example)
has left type ¢ and right type j, this tells us that if a term T % U were of type n
in the typed system, then T would be type n + i and U would be type n + j. For
example, the function application operator @ has left type 1 and right type 0,
because a type n+ 1 function is applied to a type n+0 argument to get a type n
term. It should be noted that negative relative types are possible: for example,
a singleton set operator would have type —1 for its sole argument.

There is an additional option: some operators (such as the class application
operator @!) are “opaque”; abstraction into an opaque context is not allowed in
stratified abstraction terms.

The machinery of relative types is used to identify function abstracts which
are allowed in the function abstraction scheme for the application operator @.
Such abstraction terms are said to be “stratified” by analogy with terminology
used in “New Foundations” and related set theories for formulas permitted in
set abstracts.

Formal definitions of relative type and stratification follow:

Definition: Occurrences of subterms of a term (with exceptions in opaque con-
texts) are said to have “relative type” in that term. Relative type is defined
recursively:

1. The relative type of a term in itself is 0.

2. If the relative type of an occurrence of the term A in a term T is n, and
the left (resp. right) type of the operator % is 4, then the relative type
of the analogous occurrence of A in the obvious occurrence of T in T %
U(respU % Tor % T (in the case of a unary operator)) is n + 4. If % is
opaque, then the relative type of the analogous occurrence of A in the
obvious occurrence of T in any of these terms is undefined.

3. If the relative type of an occurrence of the term A in a term T is n, then
the relative type of the analogous occurrence of A in the occurrence of T
in [T] isn—1.

4. The relative type of an occurrence of Ain T || U , Vis the same as the
relative type of its occurrence in the appropriate one of T, U, V.
Definition: An abstraction term [T] is “stratified” if the relative type in T
of each occurrence (there need not be any occurrences) of the variable 7n
bound by the brackets is defined and equal to 0, and if each abstraction term

appearing as a proper subterm of [T] is stratified.

Axiom scheme (stratified S-reduction): [T1@U = T{U/7n} is a level n ax-
iom, when [T] is a stratified abstraction term.

Note that a term like [~71@71] is actually well-formed, and we do have
([~71@71] @' U) = ~UQU, but we do not have the disastrous ([~?71@71] @ U)

= ~UQU, because [~71@71] is not stratified. Notice also that because the class
application operator @! is “opaque”, one cannot define functions in the higher
order logic which depend in any nontrivial way on facts about class application.

An important note here is that it might be thought to be dangerous that
we have made set function application and class function application coincide
for stratified abstraction terms. This turns out not to be a problem as long
as one provides enough non-functions (terms T not equal to [T @ ?1]). The
only real curiosity here is that one can prove that set function application is
nonextensional by considering class abstractions like [~71 @ 71] which would
be paradoxical if they were also set abstractions.

8 Experience with Watson

It is possible to develop the theory of quantification using the machinery of
the stratified A-calculus alone (and this is how it was done originally). If the
class application operator were not used, unstratified abstraction terms would
be treated as ill-formed (there is a current release of Watson which still takes this
approach). The representation of (Vz.¢) as forall @ [T] and the verification
of instantiation and generalization would still work, with the restriction that we
would only consider formulas represented by stratified terms. It is known that all
stratified theorems of systems like “New Foundations” or NF'U have proofs which
involve only stratified sentences, and most sentences of mathematical interest are
stratified; this restriction did not initially seem to be a problem in practical work
with the prover, except for a technical problem detailed below.

There is a technical difficulty with the implementation of first-order logic
using stratified A-calculus which must be noted. A sentence like (Vz.(Jy.x = y)),
which is regarded as “stratified” in the context of a set theory like “New Founda-
tions”, is represented in the language of Watson by a term forall @ [forsome
@ [?71 = 72]] which is not on the face of it stratified! If the whole term is as-
signed type 0, the subterm forall gets type 1 and the subterm [forsome @
[71 = 72]] gets type 0; thus the subterm forsome @ [?1 = 72] gets type —1,
from which we see that forsome gets type 0 and [?71=72] gets type 0. We then
see that 71 = 72 and so both 71 and 72, get type —2. The rules of stratification
require that the type of 71 (—2) be the same as the type of the body forsome
@ [?71 = ?72] of the abstraction term in which it is bound, and this is not the
case: the term forsome @ [?1 = 72] has type —1.

This is a merely technical problem because one can show that the relative
type of a term with a boolean value (like forsome @ [?1 = 72]) can be freely
raised or lowered by any desired amount to recover stratification. The equations
(P |l [true]l , [falsel)) @ O = P and ([P] = [true]l) = P hold when P
is replaced by either true or false; these equations can be used to freely raise
or lower the type of a term whose value is known to be boolean. Of course, no
one wants to carry out manipulations of this kind explicitly in a theorem proving
system! The solution of this problem was to enable the prover to recognize for
itself subterms belonging to classes on which type raising or lowering is possible

and exploit this information to recognize a more general class of terms as strat-
ified. With this generalization of stratification, the technical problem outlined
above became entirely invisible to the user.

Classes on which type-raising and lowering is possible (called “strongly can-
torian sets”, abbreviated s.c.) are of considerable interest in set theories like NF.
If it is assumed that the set of natural numbers is s.c., it follows that most sets of
interest in mathematics and certainly all sets of interest in computer science ap-
plications are s.c. The relaxation of stratification restrictions for natural number
values and values belonging to common data types proves useful in practice; it
has the side-effect of making the logic somewhat stronger than the simple theory
of types with infinity. It is beyond the scope of this paper, but it is worth noting
briefly that a theme of our research is the study of an analogy between the notion
of “s.c. set” and the notion of “data type”, and that practical experience with
Watson seems to indicate that this can be a useful analogy.

The problems with the treatment using stratified A-calculus which caused
us to introduce the class application operator were subtler, having to do with
uniform treatment of quantifiers over variables of different relative types in for-
mal rules for first-order logic. For example, the addition of the class machinery
makes it possible to handle the logical principle (Vzy.¢) <> (Vyz.¢) uniformly;
if quantification were implemented using set abstraction, it would be necessary
to take the difference in relative type between x and y into account in each such
equivalence. The introduction of class application and abstraction increases the
ability of the prover to apply limited forms of higher-order matching as well.

The representation of mathematical constructions in this higher-order logic
is very similar to the representation in the fragment of Church’s type theory de-
scribed above. Since the latter system is not usually used, some remarks are in
order. The lack of types like ((¢ = ¢) — ¢) and (¢ — (¢ — ¢)) in this fragment of
simple type theory does not create significant problems with expressive power:
both of these types are readily represented in type 2 = ((¢ = ¢) — (¢ — ¢)) by
exploiting the coding of any type or subcollection of a type in the linear type
scheme using a collection of constant functions in the next higher type. The
same device works in general to handle types outside the linear type scheme.
Mathematics as implemented in Watson tends to look very much like mathe-
matics implemented in a typed A-calculus, except for this kind of occurrence of
the constant function operator to adjust relative types. The declaration of “data
types” as s.c. often allows such occurrences of the constant function operator to
be omitted.

9 Conclusions and Relations to Other Work

The main purpose of this paper is to document the mathematical underpinnings
of the Watson theorem prover. We have been more attentive to the features which
are not documented elsewhere (the logic of case expressions and the new class
abstraction machinery) than to the higher order logic embodied in the stratified
A-calculus. We feel that this system has certain features of independent interest,

however. The use of the logic of case expressions as a foundation for propositional
logic seems interesting to us; certainly the axiomatization is economical. It is less
novel to identify the abstraction implicit in quantification with the abstraction
which constructs functions, and in fact the latest version with class application as
well as set application retreats from such an identification. The development of
Watson has been an outgrowth of our interest in the application of the untyped
set theories in the style of Quine and the related A-calculi, and we believe that
untyped grand logics ought to be of interest in theorem proving in general.

We are aware that there is other work using deBruijn indices and related
schemes (including the one given here) which would be technically similar to our
formal development of substitution, especially by researchers in the area of “ex-
plicit substitution”. We can only make up for our lack of references by pleading
ignorance of this work; our development is independent, though certainly not
original.

We do not believe that any theorem proving system is very close in its details
to Watson, and in any event the details of the theorem prover are not relevant to
this paper. The closest system in terms of its underlying mathematical framework
is probably HOL ([3]), which implements Church’s classical simple type theory of
functions.

References

1. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5, 1940.

2. N. deBruijn, “Lambda-calculus with nameless dummies, a tool for automatic for-
mula manipulation, with application to the Church-Rosser theorem”, in Nederpelt,
et. al., eds., Selected Papers on Automath, North Holland, 1994.

3. M. Gordon. A proof generating system for higher-order logic. Technical Report
103, University of Cambridge Computer Laboratory, January 1987.

4. M. Randall Holmes, “A functional formulation of first-order logic ‘with in-
finity’ without bound variables”, preprint, available at the Watson web page
http://math.boisestate.edu/~holmes/proverpage.html

5. M. Randall Holmes, “Systems of combinatory logic related to Quine’s ‘New Foun-
dations’ ', Annals of Pure and Applied Logic, 53 (1991), pp. 103-33.

6. M. Randall Holmes, “Untyped A-calculus with relative typing”, in Typed Lambda-
Calculi and Applications (proceedings of TLCA ’95), Springer, 1995, pp. 235-48.

7. M. Randall Holmes, Elementary Set Theory with a Universal Set, Academia-
Bruylant, Louvain-la-Neuve, 1998.

8. M. Randall Holmes, “The Watson Theorem Prover”, preprint, avail-
able as part of the online documentation at the Watson web page
http://math.boisestate.edu/~holmes/proverpage.html

9. Ronald Bjorn Jensen, “On the consistency of a slight (?) modification of Quine’s
‘New Foundations’ ”, Synthese, 19 (1969), pp. 250-63.

10. W. V. O. Quine, “New Foundations for Mathematical Logic”, American Mathe-
matical Monthly, 44 (1937), pp. 70-80.

