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1 Introduction

This paper discusses a sequence of extensions of NFU , Jensen’s improvement of
Quine’s set theory “New Foundations” (NF ) of [16].

The original theory NF of Quine continues to present difficulties. After 60
years of intermittent investigation, it is still not known to be consistent relative
to any set theory in which we have confidence. Specker showed in [20] that NF
disproves Choice (and so proves Infinity). Even if one assumes the consistency
of NF , one is hampered by the lack of powerful methods for proofs of consis-
tency and independence such as are available for use with ZFC ; very clever
work has been done with permutation methods, starting with [18] and [5], and
exemplified more recently by [14], but permutation methods can only be ap-
plied to show the consistency or independence of unstratified sentences (see the
definition of NFU below for a definition of stratification). For example, there is
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no method available to determine whether the assertion “the continuum can be
well-ordered” is consistent with or independent of NF . There is one substantial
independence result for an assertion with nontrivial stratified consequences, us-
ing metamathematical methods: this is Orey’s proof of the independence of the
Axiom of Counting from NF (see below for a statement of this axiom).

We mention these difficulties only to reassure the reader of their irrelevance
to the present work. Jensen’s modification of “New Foundations” (in [13]),
which was to restrict extensionality to sets, allowing many non-sets (urelements)
with no elements, has almost magical effects. NFU with the axioms of Infinity
and Choice is consistent relative to a weak fragment of ZFC (its consistency
can be proved in Zermelo set theory; it is equivalent in strength to Zermelo
set theory with separation restricted to ∆0 formulas, which is also known as
Mac Lane set theory). We will use the name NFU in this paper to refer to the
theory which Jensen called NFU + Infinity + Choice: we regard the consistency
of Jensen’s NFU with the assertion “the universe is finite” as of purely technical
interest (a model of this theory would be externally infinite in any case), and we
regard Choice as an essential part of the mathematician’s toolkit. NFU can be
extended in strength as far as one is willing to extend ZFC ; for example, Jensen
demonstrated that one can prove in ZFC that NFU has α-standard models for
any ordinal α. NFU is a fluent set theory; mathematical work can be done in
this system in a style not all that different from ZFC . We have argued for this
thesis in our paper [10] and our book [11], an elementary set theory textbook
using NFU .

In this paper, we will discuss a sequence of extensions of NFU . These ex-
tensions are natural from the standpoint of NFU as an autonomous foundation
for mathematics; they do not result from adjoining assumptions natural to ZFC
to NFU . They can also be motivated from a standpoint suggested by Hinnion
in [8], in which NFU (or an extension) is used as a “superstructure” over a
Zermelo-style set theory, in the same way that von Neumann-Gödel-Bernays
or Kelley-Morse set theory (KM ) introduces proper classes as a “superstruc-
ture” over ZFC . The superstructure provided by the “big” sets of NFU is more
complex and might be expected to provide more additional power than that pro-
vided by the theories with proper classes, and this indeed turns out to be the
case: each of the extensions we will consider is much stronger than superficial
consideration of the axioms added would suggest.

The system NFUM considered at the end of the paper, the strongest ex-
tension of NFU with which we deal here, is the system of our book [11]; this
paper provides the theoretical underpinnings of the system which would not
be appropriate to present in the “elementary” format of the book. The book
could be used as a supporting reference for the introductory parts of this paper,
since it gives in full arguments we omit here as being elementary. We defined
this system so as to get an interpretation of ZFC in the strongly Cantorian
isomorphism classes of well-founded extensional relations “with top” (this ter-
minology will be explained below); Robert Solovay showed us (to our surprise)
that the system is much stronger than ZFC , and, indeed, that intermediate ex-
tensions proposed by others were stronger than had been realized. The results

2



on the exact strength of NFUM itself given here are ours, but the results on the
precise strength of the intermediate systems NFUA and NFUB are Solovay’s.
The consistency strength of NFUM is precisely that of Kelley-Morse set theory
(ZFC extended with proper classes, with quantification over proper classes per-
mitted in instances of Separation, Replacement, and class comprehension) with
the addition of a predicate on proper classes which is a κ-complete nonprincipal
ultrafilter on the proper class ordinal κ. The Axiom of Cantorian Sets which
characterizes NFUA was proposed a long time ago (in [6]) by C. Ward Henson;
the Axioms of Small and Large Ordinals which are used to define NFUB and
NFUM were proposed by us recently in the course of our development of the
elementary set theory text [11].

2 Introduction to NFU

NFU as we present it is a first-order theory with sethood, equality and mem-
bership as primitive predicates. The axioms below give a theory equivalent to
Jensen’s original formulation; to these we will add axioms of Infinity and Choice.

Sets: x ∈ y → set(y)

Ext: (set(y)∧ set(z) ∧ (∀x.x ∈ y → x ∈ z))→ y = z

Comp: (∃A.set(A) ∧ (∀x.x ∈ A ↔ φ)), where the variable A is not free in φ
and φ is “stratified” (this notion is defined below).

Jensen’s original formulation did not involve a sethood predicate; our use of
such a predicate follows a suggestion of Quine in his remarks accompanying [13].
The function of the sethood predicate is to allow us to pick out the empty set
from the other objects with no elements that may be present. Our formulation
of NFU includes the additional axioms of Infinity and Choice introduced below:
the system we call NFU is a slight modification of the system he called NFU
+ Infinity + Choice in [13] (our Axiom of Infinity is different). The consistency
strength of this system is exactly that of Russell’s theory of types, as simplified
by Ramsey, with the Axiom of Infinity.

A formula is said to be “stratified” iff it makes sense in Russell’s simple
theory of types, as simplified by Ramsey, with a suitable assignment of types to
its variables. More formally, we say that a formula φ in the language of NFU
is stratified iff there is a function type from variables to integers such that for
each atomic subformula x = y of φ we have type(x) = type(y) and for each
atomic subformula x ∈ y of φ we have type(x)+1 = type(y).

Stratification extends naturally to new operations. The most succinct way
to summarize this is to describe the effects of the introduction of terms defined
using a definite description operator (following Rosser’s treatment in [17]). If
terms (ιx.φ) are admitted into our language, the function type needs to be
extended to definite descriptions as well as variables. The conditions for strati-
fication in the extended language are the conditions already stated, extended to
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apply to atomic subformulas involving definite descriptions as well as variables,
and the additional condition that type(ιx.φ)=type(x). Any operation we de-
fine can be interpreted as a definite description with parameters, and the effect
of these conditions will be to assign to the result of any operation a certain type
relative to the types of its arguments (and to enforce relationships between the
types of its arguments if it has more than one argument). For example, the
union A ∪B of two sets (definable as (ιC.(∀x.x ∈ C ↔ (x ∈ A ∨ x ∈ B))) must
be assigned the same type as A and B by this criterion, while the singleton {x}
= (ιX.(∀y.y ∈ X ↔ y = x)) must be assigned type one higher than that of x.
The von Neumann successor operation x+ = (ιX.(∀y.y ∈ X ↔ (y = x∨y ∈ x)))
is an example of an operation which is unstratified and cannot appear in any
set definition in NFU .

The axiom scheme of Stratified Comprehension can be replaced by a finite
list of comprehension axioms. The original reference for this is Hailperin’s [4],
but the axioms given there are hard to understand and use. A much more
natural set of axioms is used in my elementary set theory text [11], in which
Stratified Comprehension is proved as a meta-theorem rather than given as a
(rather undigestible!) basic assumption.

In order to introduce the Axiom of Infinity in our favorite form, we introduce
new predicates π1 and π2, with the same stratification requirements as the
equality relation. These are intended to be the projection relations of a type
level ordered pair. xπ1y, for example, is to be read “y is the first projection of
x”.

Inf: (∀x.(∃!z.xπ1z) ∧ (∃!w.xπ2w)) ∧ (∀z.(∀w.(∃!x.xπ1z ∧ xπ2w)))

Our “Axiom of Infinity” simply asserts the existence of a type-level pairing
operation. The usual Kuratowski pair 〈x, y〉 = {{x}, {x, y}} is inconvenient
for this kind of set theory because a Kuratowski pair is two types higher than
its projections. If the Axiom of Infinity were given in the more usual form
asserting the existence of an infinite set, and the Axiom of Choice were assumed
as well, it would be possible to prove the existence of a type-level ordered pair
operation as a theorem; this would involve the inconvenience of developing the
notions of function and relation first in terms of the Kuratowski pair (with a type
differential of 3 between the function and the argument in a function application
term f(x)) then re-developing it in terms of the type-level pair, recovering the
more natural type differential of 1 between a function and its argument. We
think that it is more economical to take the type-level pair as primitive from the
outset; proving that there is an infinite set, given a type-level pair, is quite easy.
The philosophical purity of defining the ordered pair in terms of membership can
be dispensed with in a system which must have urelements in any case. (In the
absence of Choice, the existence of a type-level ordered pair implies but is not
equivalent to the existence of an infinite set, but NFU with the axiom “there
is an infinite set” interprets NFU with a type-level pair in a straightforward
manner).

We also adopt the Axiom of Choice, completing the statement of our base
theory NFU . The various equivalences between forms of the Axiom of Choice
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remain valid in this kind of set theory; an economical way to state AC in NFU
is “the universal set can be well-ordered”.

We briefly review the development of basic mathematical notions in NFU .
Relations and functions are defined exactly as in the usual set theory. Cardinal
numbers (including the natural numbers) are defined as equivalence classes of
sets under equinumerousness; i.e., 0 is the set {{}} of all sets with 0 elements, 1 is
the set of all sets with one element, ℵ0 is the set of all countably infinite sets, and
so forth. Ordinal numbers are defined as equivalence classes of well-orderings
under similarity. The von Neumann ordinals have an unstratified definition
(recall that the von Neumann successor operation cannot appear with a variable
argument in the definition of any set) and are not appropriate for use in set
theory with stratified comprehension. It is consistent with NFU that no infinite
von Neumann ordinal exists; it is also possible for there to be many infinite von
Neumann ordinals; these results are established by permutation methods (see
[5]). Note that the identifications between ordinals and initial segments in the
natural well-ordering of the ordinals and between cardinal numbers and the
corresponding initial ordinals found in the usual set theory do not hold here.

We introduce a definition which will be useful below:

Definition: If κ is a cardinal number, init(κ) is defined as the first ordinal
which is the order type of a well-ordering of a set of cardinality κ.

The large objects which figure in the paradoxes of Cantor and Burali-Forti
exist in NFU , but they do not have quite the expected properties. For example,
the universal set V exists, and has a cardinality |V | (the set of all sets A such that
there is a bijection between A and V ), which is the largest cardinal. But there is
no Cantor paradox of the largest cardinal. The reason for this is that Cantor’s
theorem on the cardinality of power sets does not take the expected form. The
“theorem” |P(A)| > |A| would indeed give us a paradox with A = V . One
should be suspicious of this proposed “theorem”, because the set A appears in it
with two different relative types. In fact, what can be proved in NFU is the same
theorem which can be proved in the simple theory of types: |P(A)| > |P1(A)|,
where P1(A) is the set of all one-element subsets of A. Note that the two
appearances of A now have the same relative type. The special case of this with
A = V asserts that |V | ≥ |P(V )| > |P1(V )|; the cardinality of the set of all sets
is greater than the cardinality of the set of all singletons. The cardinality of the
universe turns out to be provably much larger than the cardinality of the set of
all sets; this is a consequence of the result of Specker that NF disproves AC,
which translates to the result that there are a lot of atoms in NFU + Choice
(see [1]). We have proved a stronger theorem which implies that there are
many cardinals between |V | and |P(V )| (see [3], p 67). The external bijection
x 7→ {x} from the universe to the set of all singletons is not a set; its definition
is unstratified, so there is no reason to expect it to be a set. The set of all
ordinals exists, and the natural well-ordering of the set of all ordinals exists.
This natural well-ordering of all the ordinals is a member of an ordinal Ω. The
Burali-Forti paradox is avoided, because the order type of the initial segment of
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the ordinals below an ordinal α with the natural order cannot be proved equal
to α; there is a difference of 2 in relative type between the ordinal α and the
order type of the segment determined by α. The Burali-Forti argument proves
that the order type of the segment determined by Ω is less than Ω. Details can
be seen in [3] or [11].

The fundamental result in the model theory of NF (due to Specker in [21])
is that NF is consistent precisely if there are models of TST (the simple theory
of types) with a “type-incrementing isomorphism” (that is, an isomorphism
between the model of TST and its submodel obtained by dropping the lowest
type1). These results transfer to NFU : a model of NFU can be obtained from
a model with a type-incrementing isomorphism of TSTU , the simple theory of
types with urelements, in which each type consists of subsets of the previous type
plus urelements (objects with no elements which are permitted to be distinct
from one another and the empty set).

A model of TST with a type-incrementing isomorphism has never so far been
constructed. But a model of TSTU with a type-incrementing isomorphism is
easily described. Any sequence of levels of the cumulative hierarchy with strictly
increasing indices can be interpreted as a model of TSTU : if type i is represented
by the stage Vαi for each i, the membership ∈i of type i objects in type i + 1
objects is defined thus: “x ∈i y ↔ x ∈ Vαi ∧ y ∈ Vαi+1 ∧x ∈ y”; the elements of
Vαi+1

− Vαi+1 are treated as urelements. The membership relations need to be
indexed because an object in Vαi+1

− Vαi+1 which is an urelement with respect
to ∈i will have its usual extension relative to ∈i+1. We give an alternative
description for those who prefer disjoint types and a single membership relation
∈TTU : type i for each i ∈ N will be Vαi × {i}, and (x, i) ∈TTU (y, i + 1) will
hold iff the two pairs are model elements, y ∈ Vαi+1, and x ∈ y.

Now it is easy to describe a model of NFU : take a nonstandard model
M of the usual set theory with an external automorphism j which moves a
(nonstandard) infinite ordinal α upward (j(α) > α). Consider the model of
TSTU determined by the sequence of levels VMji(α) of the cumulative hierarchy

(as seen by M); the automorphism j itself is a type-incrementing isomorphism
for this model. Although this sequence of levels is not a set in M , this does not
compromise the fact that it is a model of TSTU , because no assertion of the
language of TSTU can refer to more than a concrete finite number of types,
and any concrete finite set of successive stages is a set in M and models all
appropriate axioms of TSTU . Type 0 of this model of TSTU can be taken to
be the domain of a model of NFU : the membership relation of the model can
be defined for x and y in Vα as x ∈NFU y ↔ x ∈M0 j(y), where ∈M0 is the
membership relation of type 0 objects in type 1 objects in the model of TSTU
extracted from M .

More briefly, a model of NFU is obtained if one starts with a nonstandard
model M of a Zermelo-style set theory (Mac Lane set theory suffices) with an

1Forster in [2] calls this kind of map a “type-shifting automorphism”, though he notes
correctly that this is not really an automorphism unless we work with Hao Wang’s theory
TNT with all integer types.
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automorphism j moving a (nonstandard) infinite ordinal α upward, takes VMα
as the domain of one’s model, then defines the membership ∈NFU of the model
thus: x ∈NFU y ↔ (x ∈M j(y) ∧ j(y) ∈M VMα+1). We presented essentially the
same model in a more elaborate fashion in the previous paragraph to bring out
the relationship to models of TTU with a type-incrementing isomorphism. The
full strength of ZFC is not needed: the minimal strength needed is that of Mac
Lane set theory. A proof that this is a model of NFU can be found in [3], p.
68; the construction, though implicit in Jensen’s [13], was first given by Maurice
Boffa in [2].

It is useful to note that, although it accords less well with our intuitions
derived from type theory, there is an alternative formulation using a downward
endomorphism of a model of a level Vα with nonstandard index: if j is such
a downward endomorphism (i.e., if j(α) < α), we define x ∈NFU y as j(x) ∈
y ∧ y ∈ Vj(α)+1); an advantage of this formulation is that it can be used in a
situation where we cannot refer to objects outside our nonstandard Vα.

NFU thus admits a natural interpretation in terms of the cumulative hierar-
chy of the usual set theory. It is interesting to observe that NFU supports the
same interpretation of itself internally, via a natural internal representation of
the cumulative hierarchy. Consider the set of isomorphism types of well-founded
extensional relations with a “top” element (which can be thought of as “pic-
tures” of the sets of a Zermelo-style set theory); one can prove in NFU that
this structure exists as a set and has an external downard endomorphism (a
type-raising operation which does not define a function), and admits an inter-
pretation as a “model” of NFU along exactly the same lines outlined above (we
put “model” in quotes because it is not a set model; its membership relation
will be a proper class relation defined in terms of the type-raising external en-
domorphism). This representation of the cumulative hierarchy will be discussed
in more detail later in the paper; also see [7] or our recent book [11].

2.1 Cantorian and strongly Cantorian objects and T op-
erations

All of the extensions we will consider hinge on a pair of notions peculiar to set
theories with stratified comprehension. A Cantorian set is a set A such that
|A| = |P1(A)|. Note that such a set will satisfy the conclusion of the unstratified
form of Cantor’s theorem. A strongly Cantorian set is a set A such that the
class map (x 7→ {x})dA, the restriction of the singleton operation to the set A, is
a set. It should be clear that a strongly Cantorian set is Cantorian. A (strongly)
Cantorian cardinal is the cardinal of a (strongly) Cantorian set. A (strongly)
Cantorian ordinal is the order type of a (strongly) Cantorian well-ordering.

Familiar sets definable in both NFU and ZFC will be Cantorian. For ex-
ample, it is straightforward to establish that the number systems N and R are
Cantorian sets. The property which we really want nice sets to have is that of
being strongly Cantorian. The reason for this is that we can subvert stratifica-
tion restrictions on the formation of sets in the presence of strongly Cantorian
sets. Let A be a strongly Cantorian set. Let K be the restriction of the singleton
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map to A and let K−1 be the inverse of this map. Any occurrence of a variable
x restricted to a strongly Cantorian set can have its type freely raised or low-
ered by replacing references to x with references to the equivalent expressions⋃
K(x) and x = K−1({x}), in which x appears one type higher and one type

lower (respectively), iterating this process as needed. Thus, stratification re-
strictions can be ignored for variables restricted to strongly Cantorian domains.
Unfortunately, the only sets which can be proven to be strongly Cantorian in
NFU are concrete finite sets. In a model of NFU + Infinity + Choice con-
structed by the method described above with α = ω + n with n a nonstandard
natural number, all strongly Cantorian sets are finite, and some nonstandard
finite sets are not even Cantorian.

If κ = |A|, we define T(κ) as |P1(A)|. It is easy to establish that the definition
of T(κ) does not depend on the choice of the set A. Similarly, if α is the order
type of a well-ordering W , we define T(α) as the order type of the well-ordering
{({x}, {y}) | xW y}. Each of these T operations must fail to be a function.

Each T operation will coincide with the restriction of j−1 to its domain in
the models of NFU described above. To see this, consider the relation between
a set A and the set P1(A) of NFU as they are represented in one of our models.
The singleton in the sense of NFU of an element x of A is the object {j−1(x)} in
terms of the underlying nonstandard model of set theory. Thus, the cardinality
of the set representing P1(A) in the underlying model is the image under j−1

of the cardinality of the set representing A.
One can prove in NFU that the appropriate T operation commutes with

all the standard operations on cardinals and ordinals; the T operations are
proper class endomorphisms on their domains. One can prove in NFU that the
order type of the natural well-ordering of the ordinals less than α is T2(α); the
appearance of T corrects for the type differential between the ordinal and the
order type of the associated segment in the natural order on the ordinals, and
the Burali-Forti argument establishes that T2(Ω) < Ω, where Ω is the order type
of the natural well-ordering on the ordinals. One sees, therefore, that there is a
descending sequence Ti(Ω) in the ordinals; but this sequence is not a set (this
result is interesting because it establishes the existence of a countable proper
class). The exponential operation |B||A| on cardinals cannot be defined as |BA|
if one wishes it to be a function; it is necessary to define it as T−1(|BA|), which
has the effect of making the exponential function partial (as one might expect
in a system with a universal set). In general, T operations can be used to
adjust (selected) definitions which work in Zermelo-style set theory so that they
become stratified.

A set A is Cantorian exactly if T(|A|) = |A|; similarly, Cantorian cardinals
and ordinals are exactly the fixed points of the relevant T operators. An ordinal
is strongly Cantorian iff all smaller ordinals are strongly Cantorian. This last
result can be demonstrated by considering the function f which sends each
ordinal T(α) to the singleton set {α}. An ordinal is Cantorian exactly if f
sends it to its own singleton. All the ordinals smaller than a given ordinal are
Cantorian iff f witnesses a bijection between the set of smaller ordinals and
their singletons, making the segment and so the given ordinal itself strongly
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Cantorian. In terms of our model construction for NFU , Cantorian cardinals
and ordinals are exactly the fixed points of the automorphism j (because they
are exactly the fixed points of T, which corresponds to j−1).

More detailed proofs of theorems of NFU discussed in this section can be
found in [11].

3 The Axiom of Counting

We now begin to introduce the extensions of NFU which are the object of our
investigations. We use some nomenclature introduced by Solovay for specific
extensions of NFU .

We are interested only in extensions of our base theory NFU (recall that
NFU includes Infinity and Choice for us) which are natural in terms of notions
proper to NFU ; we are not interested in extensions which ape ZFC , such as
NFU + “there is an inaccessible cardinal”.

The first axiom we propose to extend NFU is the extremely natural axiom:

Axiom of Counting: All finite sets are strongly Cantorian.

which is due to Rosser in [17] (but not in this form: his form of the axiom is
“{1 . . . n} has n elements”). Although we refer to the extension of NFU with
Counting simply as NFU + Counting here, the name NFUR (in honor of Rosser)
has been coined for it by Marcel Crabbé.

In spite of appearances, this is not an axiom about arithmetic. It must have
some arithmetical consequences for meta-mathematical reasons of consistency
strength, but its natural consequences are in set theory. NFU (with Infinity)
proves the existence of in for each concrete natural number n, but cannot
prove the existence of iω. NFU + Counting proves the existence of iinit(in)
for each concrete n; it proves that each in is strongly Cantorian (assuming that
all finite sets are strongly Cantorian implies that far larger sets are strongly
Cantorian as well). The Axiom of Counting can hold in a model (as we will show
below) in which iinit(iω) does not exist. Orey showed in [15] that the Axiom of
Counting is independent of NF (if NF is consistent); he used metamathematical
techniques to prove this. The results and techniques apply in NFU ; NFU +
Counting is strictly stronger than NFU (with Infinity). Jensen showed how to
build ω-standard models of NFU , in [13]; an ω-standard model of NFU will
certainly satisfy Counting (and will satisfy stronger assumptions as well, such
as Mathematical Induction for unstratified sentences).

We outline proofs of these results. They represent the first indication that
natural-seeming assertions that certain sets are strongly Cantorian may be
stronger than one might naively expect.

Definition: exp(κ) is defined as 2κ, for any cardinal κ; it is useful to recall
from the definition of exponentiation of cardinals given earlier that 2|A| =
T−1|P(A)| rather than |P(A)|.
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Definition: Let B be the intersection of all sets A of cardinals such that ℵ0 ∈ A,
A is closed under the function exp2, and A contains the supremum of each
subset of A. This set is well-ordered by the natural order on cardinals;
we define iα as the cardinal κ (if any) in B with the property that the
restriction of the natural order on cardinals to the elements of B less than
κ has order type α (i.e., is an element of α). Note in particular that
i0 = ℵ0 and in+1 = exp(in) for each natural number n.

Theorem (NFU + Axiom of Counting): For each n, in exists.

Proof: Certainly i0 = ℵ0 exists. Suppose that in is defined. Let A be a set
with |A| = in. We would like to assert that |P(A)| = in+1, but the
correct theorem of NFU is |P(A)| = iT (n)+1; the application of the T
operation is needed to preserve relative type (the power set operation is
type-raising). In mere NFU the proof would break down at this point,
since it might be possible for T (n) + 1 < n to hold; there are models
of NFU in which the cardinality of the universe is a nonstandard in
(let α = ω + n in our model construction above). But the Axiom of
Counting is equivalent to the assertion (∀n ∈ N )(T (n) = n), which allows
us to conclude that |P(A)| = in+1 as we hoped originally. The proof is
complete.

Corollary: iω exists.

Proof: Choose one set of each cardinality in and take their union.

Theorem (ZFC ): There is a model of NFU + Axiom of Counting + “iinit(iω)
does not exist”.

The model construction involves an unusual adaptation of the ultrapower
construction. For anyone who feels that our account of this “ultrapower
construction” needs to be supplemented, see the very precise description
of a similar construction in Solovay’s electronically available preprint [19].
We developed this construction for the purpose of constructing models of
NFU in our Ph.D. thesis [9]; Solovay comments in [19] that it is similar
to standard constructions used in the theory of large cardinals.

We define the “full language of A” as the first-order language in which
there is a predicate symbol for every subset of A and an n-ary relation
symbol for every subset of the Cartesian power An. The “full theory” of a
set A is defined as the set of true sentences expressible in the full language
of A with the range of all quantifiers taken to be the set A.

The usual ultrapower construction involves the use of a nonprincipal ul-
trafilter U on a set X; the ultrapower AU , a nonstandard model of the
full theory of A, is obtained by considering the equivalence classes of the
set [X → A] of functions from X to A under the equivalence relation

2This means “if a ∈ A and exp(a) exists, then exp(a) ∈ A”.
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defined as follows: f ∼U g iff {x ∈ X | f(x) = g(x)} ∈ U . Any rela-
tion R(a1, . . . , an) of the full language of A is interpreted in AU by the
relation RU ([f1], . . . , [fn]), which holds for each sequence of [fi]’s in AU

(represented as equivalence classes under ∼U of functions fi : X → A) iff
{x ∈ X | R(f1(x), . . . , fn(x))} ∈ U .

We think of the ultrafilter U as a complete description of a nonstandard
object to be adjoined to X; U tells us which predicates of the full language
of X are satisfied by this nonstandard object. The ultrapower AU can be
thought of as the collection of all images under standard functions in
[X → A] of the nonstandard object;  Loś’s theorem of model theory tells
us that the ultrapower is an elementary superstructure of A for the full
language of A, where the embedding of A into the ultrapower sends each
element a ∈ A to the equivalence class of the constant function with value
a.

In the modified construction presented here, a sequence of ultrafilters Ui
is used: each Ui is a nonprincipal ultrafilter on the set [X]i of i-element
subsets of X, and the Ui’s satisfy additional coherence conditions. It is
assumed that X is a set of ordinals with no largest element; this means
that there is a natural order on X, and, moreover, that we may choose the
nonprincipal ultrafilter U1 on [X]1 to include all (images under the sin-
gleton set construction of) final segments of X. The coherence conditions
on the Ui’s are stated below.

The motivation of the construction which follows is that Ui will serve as
a complete description of (the domain of) a sequence of i nonstandard
elements of X (thus nonstandard ordinals). For each j < i, Uj will de-
scribe (the domain of) each consecutive subsequence of length j of the
objects described by Ui, so they will have limited homogeneity properties
(nonconsecutive subsequences may not have the same description). In the
nonstandard model of set theory which serves as precursor to the model
of NFU to be constructed, the ultrafilter Ui will “describe” each finite
set {jn(α), jn+1(α), . . . , jn+i−1(α)} of i consecutive iterated images of the
ordinal α used in the model construction under the automorphism j.

The elements of the “ultrapower” we construct will be equivalence classes
of functions, but not of functions with domain X. The set of functions we
will partition is the set of functions f with domain [Z → X] and range A
with the additional feature that there are m < n ∈ Z such that the values
of f at an element F of [Z → X] depend only on the restriction of F to
[m,n]. [m,n] is said to be a support of f , and such functions f are said
to have finite support in Z.

Functions f and g with finite support will belong to the same model
element iff they satisfy the equivalence relation f ∼U g defined as follows:
f ∼U g holds iff whenever [m,n] ⊆ Z is a common support for f and g,
the set {rng(h) | h : [m,n] → X is strictly increasing and f(h′) = g(h′)
for all h′ : Z → X such that h′ ⊃ h} belongs to Un−m+1.
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The coherence conditions on the sequence U of ultrafilters are precisely
what is needed to make the construction work: for any element A of Un+1,
the collection of elements of [X]n obtained by dropping the largest element
of each element of A belongs to Un, and likewise the collection of elements
of [X]n obtained by dropping the smallest element of each element of A
belongs to Un. This has the effect of ensuring that the requirements for
different common supports of f and g in the definition of f ∼U g are
consistent.

The motivation here is that each element of the “ultrapower” will be
the image under a standard map from some [X]i to A of a finite set of
objects taken from a Z-sequence of nonstandard objects any consecutive
finite subsequence of which is indiscernible from any of its translates with
respect to standard properties and relations on X. A translation of these
“indiscernibles” will induce the automorphism of the “ultrapower” we are
constructing.

Relations of the full language of A inherited by the “ultrapower” obtained
in this way can be defined in essentially the same way that relations of
the full language of A are defined in the usual kind of ultrapower, with
reference to a common support [m,n] of the functions involved and the
appropriate Un−m+1: RU ([f1], . . . , [fk]) holds iff, for some common sup-
port [m,n] of the fi’s (and so for any common support of the fi’s) we
have {x ∈ [X]n−m+1 | R(f ′1(x), . . . , f ′k(x))} ∈ Un−m+1, where f ′i(x), for
any x ∈ [X]n−m+1, is defined as the result of applying fi to any function
Z → X which extends the increasing function from [m,n] onto x (this
result is well-defined because [m,n] is a support of fi).

 Loś’s theorem for conventional ultrapowers holds for “ultrapowers” con-
structed in this way as well: the easiest way to see this is to observe that
the restriction of this “ultrapower” to functions with support [−n, n] is
isomorphic to an ultrapower of the usual sort, and this sequence of re-
stricted ultrapowers has the full “ultrapower” as a direct limit (there is a
natural elementary embedding of each of these restricted ultrapowers in
the next).

The distinguishing feature of this kind of “ultrapower” is that there is an
external automorphism j of the ultrapower, considered as a nonstandard
model of the full theory of A. The automorphism sends each equivalence
class [f ] to the equivalence class [f+], where f+(F ) = f(F ◦ σ), where σ
is the successor map on Z, for each F ∈ [Z → X]. The fact that this is
an automorphism is ensured by the coherence conditions on the Ui’s. The
existence of the automorphism makes these models appropriate for use in
constructing models of NFU .

Lemma: Let X be an infinite set of ordinals with no largest element.
Then there are non-principal ultrafilters Ui satisfying the coherence
conditions given above.
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Proof of Lemma: Clearly there is a non-principal ultrafilter U1 on X
which contains all final segments of X. For each set A in U1, define
A+ as the collection of all two element subsets of X such that the
larger element belongs to A and A− as the collection of all two-
element sets such that the smaller element belongs to A. We claim
that the set of all A±’s with A ∈ U1 is a filter, which can be extended
to an (obviously non-principal) ultrafilter U2.

To verify that we have a filter, it is sufficient to verify that A+
1 meets

A−2 for A1, A2 ∈ U1. We can see further that it is sufficient to verify
that A+ meets A− for each A ∈ U (choose A to be a subset of both
A1 and A2). To see this it is sufficient to observe that any A must
have at least two members, since U1 is nonprincipal.

Similarly, if Un has been defined (and n > 1), for each set A in Un,
define A+ as the collection of all (n+1)-element subsets B of X such
that the n-element set obtained by dropping the smallest element of
B belongs to A and A− as the collection of all (n+1)-element sets B
such that the n-element set obtained by dropping the largest element
of B belongs to A. We claim that the set of all A±’s with A ∈ Un
is a filter, which can be extended to an (obviously non-principal)
ultrafilter Un+1.

Just as in the basis case, and for the same reason, it is sufficient to
show for any A ∈ Un that A+ and A− must intersect. We consider the
set A+ of all n−1 element sets which can be extended to an element
of A by adding a new maximum element; this set must belong to
Un−1. We consider the set A− of all n− 1 element sets which can be
extended to an element of A by adding a new minimum element; this
must be an element of Un−1 as well. Thus the intersection of A+ and
A− must be nonempty (since Un−1 is an ultrafilter). Any element
of this intersection can be extended by adding a new maximum and
a new minimum to an element of the intersection of A+ and A−,
completing the proof of the claim.

The proof of the Lemma is complete.

The Lemma and the preceding discussion show us that we can construct
a model of NFU from any stage Vλ of the cumulative hierarchy, with λ a
limit ordinal. One can use λ itself as the set X and Vλ as A. The ultrafil-
ters Ui give complete descriptions in the full language of Vλ (in which all
sets and relations on Vλ can be used as predicates) of indiscernible non-
standard ordinals just below λ; the nonstandard element corresponding to
the function taking each F in [Z → X] to F (0) can be taken as the non-
standard ordinal α in our standard construction of models of NFU ; it is
moved by the automorphism of the ultrapower to the larger nonstandard
element corresponding to the function taking each F in [Z → X] to F (1).
The “Vα” coded in the ultrapower model will be the domain of our model.

By constructing the nonprincipal ultrafilters Ui with more care, we proceed
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to prove the main theorem. This construction will use the Erdös-Rado
partition theorem (See [12], p. 323).

It is an immediate consequence of the Erdös-Rado theorem that any map
from [iω]n to ω is constant on [Y ]n for some infinite subset Y of iω.

The construction proceeds as follows. Construct an ultrapower model (of
the standard variety) of Vω+ω+ω (the subscript here is chosen large enough
to ensure that all the objects we need are in this level; it is not chosen
with maximum economy!) in which there is a nonstandard “finite set” F
of maps from domains [iω]n for varying values of n to ω which includes
all standard maps from [iω]n to ω for each standard n.

This ultrapower will be V Uω+ω+ω, where U is chosen as follows: let Maps be
the set

⋃
n∈ω[[iω]n → ω] of all maps from [iω]n to ω for whatever n; then

U will be a nonprincipal ultrafilter on the set [Maps]<ω of finite subsets
of Maps with the property that the set of supersets {y ∈ [Maps]<ω | x ⊆
y} ∈ U for each finite set x ∈ [Maps]<ω. The ultrafilter U serves as
the “description” of the nonstandard finite set F containing all standard
elements of Maps. We give this model the short name M .

For any natural number n and map f from [iω]m to ω, with m < n, the
map Gn(f) from [iω]n to ω is defined thus: Gn(f)(A) is the result of
applying f to the set consisting of the m smallest elements of A.

Let N be the maximum “natural number” in the sense of the model M
such that the nonstandard finite set F seen by M contains a map with
domain [iω]N . Now consideration of the values of all the maps in GN [F ]
induces a nonstandard partition of [iω]N into ω pieces, which must itself
have a nonstandard homogeneous set H by the Erdös-Rado theorem. Ob-
serve that H is in fact homogeneous (according to the model M) for every
standard partition of a [iω]n (the domain of a standard partition will of
course have standard index n) into countably many parts.

Use i-tuples of elements of H as an oracle for the construction of Ui’s with
X = iω: that is, let a set B ⊆ [iω]i in the real world belong to Ui iff
M |= “B meets (and so contains) [H]i”. It is possible to build “ultrapower
models” with automorphism as above using these Ui’s; it is important to
note that all elements of H must be seen in M to lie between the same
nonstandard in and in+1, which implies that all final segments of iω
will actually belong to U1 as required by the construction. It should be
clear that any “ultrapower model”M with automorphism j built as above
using this sequence of ultrafilters will have j(x) = x for each element x
such that M |= “x is a natural number”.

The model of NFU obtained from the “ultrapower” built from Viω using
this sequence of Ui’s will satisfy the Axiom of Counting, because all natural
numbers of the “ultrapower” are fixed by the automorphism and so their
analogues in the model of NFU are both Cantorian (because fixed) and
strongly Cantorian (because all smaller natural numbers are fixed). The
model fails to contain the ordinal iinit(iω), because the model contains a
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largest iinit(in) (indexed by the largest nonstandard in which lies below
all elements of H in the model M of the construction above).

The proof of the theorem is complete.

In this model iinit(in) will fail to exist for some nonstandard n; this is
the best possible result, for each standard iinit(in) can be shown to exist in
NFU + Axiom of Counting. The reason for this (in outline) is that iα can be
shown to exist for each strongly Cantorian α (in basically the same way that
we showed iω to exist given Counting). iα can be shown to be Cantorian, but
not to be strongly Cantorian. i0 and each concrete in is strongly Cantorian
given Counting (because the power set of a strongly Cantorian set is strongly
Cantorian), so each concrete iinit(in) exists, but this cannot be proved for
general, possibly nonstandard n (the model constructed above shows such a
proof to be impossible; an attempt to prove that each in is strongly Cantorian,
and so that each iinit(in) exists, would require mathematical induction on an
unstratified condition, which is thus seen not to be supported by NFU with the
Axiom of Counting).

It is worth observing in conclusion that the same technique used here to
construct a model in which ω is strongly Cantorian but iinit(iω) does not exist
can be used to construct, for any given infinite ordinal β of ZFC , a model of
NFU in which β has a strongly Cantorian analogue but iinit(iβ) does not; there
is no special property of ω involved in the model construction above.

We think that part of the interest of this section lies in the fact that it
is possible to construct models of NFU using ultrafilters. It should be noted
that these constructions are not as “sharp” as Jensen’s constructions using term
models in [13]: Jensen showed how to build a model of NFU in which the order
type of the analogue of an infinite ordinal β of ZFC is actually β (a β-standard
model); the ultrapower models constructed here will include nonstandard ele-
ments below β (in fact nonstandard natural numbers) unless the ultrafilters Ui
are countably complete, which requires a measurable cardinal!

4 The Axiom of Cantorian Sets; NFUA; Getting
n-Mahlo Cardinals

The second axiom we propose to extend NFU is again a natural simplifying
assumption, originally suggested by C. Ward Henson in [6] in the context of NF
and with an additional condition which would be superfluous here. Following
Solovay, we define the system NFUA as NFU + Infinity + Choice plus the
additional axiom

Axiom of Cantorian Sets: All Cantorian sets (equiv. cardinals, ordinals)
are strongly Cantorian.

Since N is provably Cantorian in NFU , the Axiom of Counting is provable
in this system.

Robert Solovay has shown the following:
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Theorem (Solovay): The consistency strength of NFUA is exactly that of
ZFC + the scheme consisting of the sentences “there is an n-Mahlo car-
dinal” for each concrete natural number n.

We admit having been amazed by this result, which concerns a system we
were aware of but did not even consider in our attempt to find an extension of
NFU with a “nice” representation of ZFC . A complete proof of this result is
not given here; it is pending from Solovay himself.

We present a proof that NFUA implies the existence of n-Mahlo cardinals.
This is a refinement of a proof of Solovay’s in two senses: Solovay’s original
results were for L, the constructible universe, as coded in the interpretation of
Zermelo-style set theory in the isomorphism classes of well-founded extensional
relations. We showed that it is not necessary to work in L (but Solovay supplied
a further refinement of our technique.) Further, Solovay had separate proofs
for the existence of an inaccessible and for the existence of n-Mahlo cardinals;
we discovered how to refine Solovay’s proof of inaccessibles to give n-Mahlo
cardinals as well, which is a considerable improvement on the earlier situation,
because Solovay’s proof of the existence of n-Mahlo cardinals was quite complex.

The proof which follows is similar to the proof for the case of inaccessibles
given in our elementary text [11], which supplies information about the definition
of “routine” set theoretical concepts (e.g., cofinality, ordinal indexing) in NFU .

Definition: A 0-Mahlo cardinal is an inaccessible. An (n+ 1)-Mahlo cardinal
is a cardinal κ with the property that any closed unbounded set in the
natural order on seg(init(κ)) (the set of ordinals less than init(κ)) contains
the initial ordinal of an n-Mahlo cardinal.

Theorem (Solovay, refined by Holmes): NFUA proves the existence of n-
Mahlo cardinals for each concrete natural number n (This is not the same
as the assertion that it proves (∀n ∈ N )(∃κ)(κ is n-Mahlo), which it in
fact does not).

Proof: We first prove that non-Cantorian inaccessible cardinals exist; we then
adapt the proof to the stronger case of n-Mahlos.

We fix a well-ordering ≤ on sets of cardinal numbers.

We define an operation F on pairs of cardinals. This operation is defined
in the following cases; in all other cases it is undefined.

1. Suppose α 6= β are both not strong limit cardinals. We define F (α, β)
as (α−, β−), where we define κ− for any cardinal κ as the smallest
cardinal λ such that 2λ ≥ κ.

2. Suppose that α 6= β are singular strong limit cardinals with distinct
cofinalities. Then F (α, β) is defined as (cf(α),cf(β)).

3. Suppose that α 6= β are singular strong limit cardinals with the same
cofinality. Let A be the first set (in the sense of our well-ordering ≤ of
sets of cardinals) of cardinals of order type cf(α) = cf(β) cofinal in the
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natural order on cardinals less than α; let B be chosen in the same
way from the cardinals less than β, but using the order T (≤) (that
is, the order {(T[A],T[B]) | A ≤ B} where T[A] is the elementwise
image of a set of cardinals A under the T operation on cardinals)
instead of the order ≤ (so the definition will fail if β is not an image
under T). Let these sets be indexed by ordinals in increasing order:
F (α, β) is defined as (Aδ, Bδ), where δ is the smallest ordinal such
that Aδ 6= Bδ.

Observe that projections of F (α, β) will always be strictly less than the
corresponding projections of (α, β), when defined.

We now define a sequence (αi, βi) of pairs of cardinals as follows: α0 is
an arbitrary non-Cantorian cardinal, and β0 = T(α0) 6= α0. We define
(αi+1, βi+1) as F (αi, βi), if this is defined, and stipulate that (αi+1, βi+1)
is undefined otherwise. Clearly this sequence must be finite.

If α is a sequence of cardinals, we adopt the notation T(α) for the sequence
{(T(n),T(κ)) | (n, κ) ∈ α}. The definition of this sequence is stratified, so
it exists as a set. This is the natural T operation on sequences of cardinals,
and would correspond (mod differences in the representations of cardinals
as sets) to j−1 on sequences of cardinals in the nonstandard models of
set theory with automorphism j underlying the models of NFU we have
discussed.

We would like to show by induction that βi = T(αi) and βi 6= αi whenever
it is defined. This is a little suspect due to the involvement of the type-
raising proper class map T, but it is a consequence of the Axiom of Canto-
rian Sets that i = T(i) for each natural number i (this is equivalent to the
assertion that the Axiom of Cantorian Sets implies Counting in NFU ):
the condition is equivalent to the condition βi = (T(α))T (i) = (T(α))i, in
which reference to a T operation is confined to a constant; the condition
does define a set of natural numbers, so induction will work!

1. Suppose αi 6= βi = T(αi) are both not strong limit cardinals. We
defined (αi+1, βi+1) = F (αi, βi) as (αi−, βi−), where we define κ−
for any cardinal κ as the smallest cardinal λ such that 2λ ≥ κ. Clearly
βi+1 = T(αi+1), since T is an endomorphism; we see further that
βi+1 6= αi+1, because if they were equal αi 6= βi = T(αi) would both
be dominated by 2αi− = 2βi− = T(2αi−), which would be Cantorian,
so (by the Axiom of Cantorian Sets) αi would have to be Cantorian
and so equal to βi.

2. Suppose that αi 6= βi = T(αi) are singular strong limit cardinals
with distinct cofinalities. Then (αi+1, βi+1) = F (αi, βi) was defined
as (cf(αi),cf(βi)). It is sufficient here to observe that T commutes
with cf.

3. Suppose that αi 6= βi = T(αi) are singular strong limit cardinals
with the same cofinality. Let A be the first set (in the sense of ≤) of
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cardinals of the (Cantorian) order type cf(αi) = cf(βi) = T(cf(αi)).
cofinal in the natural order on cardinals less than α; let B be chosen
in the same way from the cardinals less than β, but using the order
T(≤) instead of the order ≤ (note that βi is by hypothesis an image
under T). Let these sets be indexed by ordinals in increasing order:
(αi+1, βi+1) = F (αi, βi) is defined as (Aδ, Bδ), where δ is the smallest
ordinal such that Aδ 6= Bδ. δ < cf(αi), which is Cantorian, so δ is
Cantorian by the Axiom of Cantorian Sets. It is clear that T[A] = B
(it is important here that T(≤) is used in place of ≤ in the definition
of B). T(Aδ) = (T[A])T (δ) = Bδ and the assumed distinctness of Aδ
and Bδ complete this case.

Since T is an endomorphism, each pair (αi, βi) will be of the same “kind”
(successor, singular limit or inaccessible); the only way that the sequence
can terminate is with a pair of distinct (and so non-Cantorian) inaccessible
cardinals.

The proof that there are inaccessibles will now be upgraded to prove that
there are non-Cantorian inaccessibles in certain clubs:

We describe a set A as semi-natural iff for each x which is less than or
equal to an element of A, x ∈ A iff the minimum of T(x) and T−1(x) is also
in A (if T−1(x) is undefined, T(x) is taken as the minimum). Equivalently,
if x and T (x) are both bounded by elements of A, x ∈ A↔ T (x) ∈ A.

If we fix a semi-natural set A of cardinals which has non-Cantorian ele-
ments and is closed except possibly at its upper limit, we can adapt the
proof above to show that A contains non-Cantorian inaccessibles. Define
κA as the largest element of A less than or equal to κ, for each cardinal
κ; the fact that A is closed except possibly at its upper limit ensures that
κA exists as long as κ is dominated by some element of A. Define G(α, β)
as (π1(F (α, β))A, π2(F (α, β))A); in each clause of the definition of F , we
apply the additional operation κ 7→ κA to each projection of the result.
The fact that A is semi-natural ensures that κ 7→ κA commutes with T as
long as its argument is dominated by some element of A; this is ensured in
the cases that interest us by choosing the initial pair of cardinals (α0, β0)
from A.

It is important for the adaptation of the induction argument to observe
that if κ 6= T(κ) and both cardinals are dominated by some element of A,
it will be the case that κA 6= T(κA) = (T(κ))A. This is needed to ensure
distinctness of the projections of values of G in the cases that interest us.
To see that this is true, it is sufficient to observe that the least element
γ of a semi-natural set A greater than a given Cantorian element δ of A
must itself be Cantorian: otherwise min(T−1(γ),T(γ)) would be a smaller
element of A greater than δ. Thus if κA = T(κA) = (T(κ))A, we would
have to conclude that κ was dominated by a Cantorian element of A and
so was itself Cantorian, contrary to assumption.
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The argument for inaccessibles in A then proceeds in exactly the same
way as the argument for inaccessibles in general, using G instead of F .

To show the existence of Mahlo cardinals, we add the following new case
to the definition of F (and a corresponding case to the induction proof):

4. Suppose that α and β are distinct inaccessible cardinals which are
not Mahlo. Select the ≤-first closed unbounded set A of cardinals
containing no inacessibles in the cardinals below αi, and the T(≤)-
first closed set B of cardinals with no inaccessibles in the cardinals
below βi. Index these two sets with ordinals in increasing order.
There must be a point at which the two sets differ (otherwise the
limit of the smaller set, an inaccessible, would belong to the other
set, because the sets are closed). Let δ be the first index at which the
corresponding elements of the two sets differ: let (Aδ, Bδ) be taken
as F (α, β).

The corresponding case of the induction proof is tricky in that the only
way we can ensure that T(Aδ) = Bδ is to prove that the index δ must be
fixed under T (i.e., Cantorian), which is not obvious.

If δ is non-Cantorian, then there are non-Cantorian Aα (equivalently Bα)
with the property that Aβ = Bβ for all β ≤ α; a suitable α would be the
minimum of T(δ) and T−1(δ).

We claim that the set of ordinals Aα such that Aβ = Bβ for all β ≤ α
is semi-natural. Obviously B = T[A]. Let β = min(T(α),T−1(α)).
Then Aβ = Bβ by definition of the indicated set. Now observe that
if β = T(α) we can conclude that T(Aα) = T[A]T (α) = Bβ = Aβ ,
establishing that T(Aα) is in the set; if β = T−1(α), we argue that
T−1(Aα) = (T−1[A])T−1(α) = Bβ = Aβ . In either case, we see that
the minimum of T(Aα) and T−1(Aα) is in the set, supporting the claim
that the set is semi-natural. There is a little more to show. It is necessary
to show that if λ is a cardinal bounded by an Aα in the indicated set which
is not itself a member of the indicated set (and so is not an Aγ at all),
that the minimum of T (λ) and T−1(λ) is not in the indicated set. It is
sufficient to observe that if T (λ) or T−1(λ) were equal to some Aβ in the
indicated set, the same calculations given above for T (Aβ) and T−1(Aβ)
would work to show that λ was in fact an Aγ , which would contradict the
choice of λ.

Since the indicated set is semi-natural and closed except possibly at its
upper limit, it must have inaccessible elements if it has any non-Cantorian
elements. By definition of A and B, it can have no inaccessible elements,
so it must have no non-Cantorian elements. We have seen above that if
δ is non-Cantorian, the indicated set must have non-Cantorian elements.
From this it follows that δ is Cantorian, from which follows T(Aδ) = Bδ,
which completes the proof.
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Exactly the same argument used to get 1-Mahlos from inaccessibles can
then be used to get 2-Mahlos from 1-Mahlos: extend the definition of G
and use it to prove that each semi-natural set which has non-Cantorian
elements and is closed except possibly at its upper limit contains 1-Mahlos,
then argue just as above that there are 2-Mahlos. The same argument
gets (n + 1)-Mahlos from n-Mahlos for each concrete n. Mathematical
induction on n will not suffice to show that there are n-Mahlos for each
n (fortunately, since this is not a theorem!), because of the role of the
unstratified condition “there are n-Mahlos in each semi-natural set which
has non-Cantorian elements and is closed except possibly at its upper
limit” in the step of the argument which proves the existence of (n + 1)-
Mahlos.

4.1 The Axiom of Large Ordinals; T-sequences

The models of NFUA constructed by Solovay on minimal consistency strength
hypotheses also satisfy the following additional axiom:

Axiom of Large Ordinals: For each non-Cantorian ordinal α, there is a nat-
ural number n such that α > Tn(Ω).

Although this axiom strengthens NFUB (the theory introduced in the next
section) enormously, it adds no strength at all to NFUA (natural models of
NFUA constructed with minimal consistency strength hypotheses have the con-
crete ordinals Tn(Ω) coinitial (downward cofinal) in the non-Cantorian ordi-
nals; such constructions will be published by Solovay). Some work is required,
though, to see that this axiom can even be expressed in the language of NFU !
The difficulty is with the appearance of T with a variable exponent.

Note that the Axiom of Large Ordinals is another natural simplifying as-
sumption: it asserts that the endomorphism of the ordinals has the simplest
possible structure.

We exhibit the formal underpinnings which make it possible to express the
axiom:

Definition: A T-sequence is a (set) sequence s of ordinals, of finite or infinite
length, indexed by natural numbers, such that si+1 = T(si) whenever
i+ 1 ∈ dom(s).

Note that the definition of “T-sequence” is unstratified. It is very important
that a T-sequence is a set ; the sethood of a T-sequence makes it possible to carry
out induction on otherwise unstratified conditions as far as the T-sequence goes!
It is easy to prove in NFU that all T-sequences are either monotone increasing,
monotone decreasing, or constant.

Definition: Tn(α) , for n a natural number and α an ordinal, is the unique
ordinal which appears as the nth term sn of all T-sequences s of sufficient
length whose 0th term s0 is α.
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It is a theorem of NFUB (the theory introduced in the next section) that
Tn(α) is well-defined for each natural number n and ordinal α (this is an easy
application of unrestricted mathematical induction (for all conditions, stratified
or not), which holds in NFUB); it is a meta-theorem of weaker systems that it
is well-defined for each concrete natural number n. It is, of course, harder to
reason about this concept in the weaker systems.

A nice theorem which is only significant for our weakest system (without
Counting) is that if Tn(α) is defined, then n must be strongly Cantorian; this
follows from the easy observation that a finite T-sequence is itself a strongly
Cantorian set: its “image” under the T operation is the result of dropping one
term at the beginning and adding one term at the end, so must be of the same
length.

An open question remains about T-sequences in weak theories. A constant
T-sequence can of course be infinite in length, and a strictly decreasing T-
sequence must be finite since it is a strictly decreasing sequence of ordinals, but
there remains the following

Question: Is there a model of NFU in which there is a strictly increasing
T-sequence of infinite length?

Such a model must satisfy the Axiom of Counting; we conjecture that some
stronger hypotheses than this may be needed.

The following theorem was surprising to us; we didn’t originally think that
NFU gave enough expressive power.

Theorem (NFU ): The Axiom of Large Ordinals implies the Axiom of Can-
torian Sets.

Proof: Suppose the Axiom of Cantorian Sets to be false. Then there is a
Cantorian ordinal α which dominates a non-Cantorian ordinal β (because
any Cantorian ordinal which dominates only Cantorian ordinals is strongly
Cantorian). Let s be a T-sequence with s(0) = Ω. It is easy to prove by
mathematical induction that s(n) > α for every n, from which it follows
that Tn(Ω) > α > β for all n, which contradicts the Axiom of Large
Ordinals. The proof is complete.

It turns out that using the Axiom of Large Ordinals instead of the Axiom of
Cantorian Sets in conjunction with the strong Axiom of Small Ordinals intro-
duced in the next section causes a considerable boost in consistency strength.

5 The Axiom of Small Ordinals; NFUB and
NFUB−; Interpreting KM with aWeakly Com-
pact Cardinal

We proposed the following extension of NFU ourselves, which Solovay calls
NFUB . NFUB consists of NFUA plus the axiom scheme

21



Axiom of Small Ordinals: For each formula φ (stratified or unstratified),
there is a set A such that the elements of A which are strongly Can-
torian ordinals are precisely the strongly Cantorian ordinals x such that
φ.

This axiom scheme is given in a weaker form than in [10] or [11]; the form
given there includes Cantorian Sets as a consequence, and is equivalent to what
is given here in the presence of the Axiom of Cantorian Sets.

We now demonstrate that the system NFUB− = NFU + Counting + Ax-
iom of Small Ordinals (note the omission of the full Axiom of Cantorian Sets)
interprets ZFC .

The natural way to interpret Zermelo-style set theory in NFU , to which
we have already alluded above, is to consider the isomorphism classes of well-
founded extensional relations “with top” (a notion which we will define shortly).
The idea is to consider relations which can serve as “pictures” of the membership
relation restricted to the transitive closure of a set in a Zermelo-style theory.

Definition: We define the full domain of a relation R as the union of the
domain of R and the range of R.

Definition: A relation R is well-founded if for every subset S of the full domain
of R there is an element s of S such that there is no t ∈ S such that
tR s; such an s is called an “R-minimal” element of S. A relation R is
extensional iff distinct elements of the range of R have distinct preimages
under R. A well-founded extensional relation R is said to have t as its
“top” if for every x in the full domain of R there is a finite sequence s
with its first element s0 = x, siRsi+1 for each appropriate index i, and
its last element sn = t. The empty relation has anything at all as its
top; a nonempty well-founded extensional relation has a unique top by
well-foundedness (if it had more than one top there would be a nontrivial
cycle in the relation, whose domain would have no minimal element).

A well-founded extensional relation with top is suited to be a picture of the
transitive closure of a set in a set theory with Extensionality and Foundation.
The top stands in for the set actually being represented. With each element
x of the full domain of a well-founded extensional relation with top is associ-
ated a maximal subrelation of which x is the top; this is called the component
associated with x. (Notice that this works correctly for empty relations; every
nonempty well-founded extensional relation with top has a unique element of
its domain with empty preimage by well-foundedness, and the component as-
sociated with this unique element is the empty relation, of which the unique
element (and everything else) is a top). The components associated with the
preimages of the top of a well-founded extensional relation R are called imme-
diate components and are pictures of the elements of the set pictured by the
relation R.

In NFU , the isomorphism classes of well-founded extensional relations with
top make up a set Z. There is a natural “membership” relation (also a set) on
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Z, which we call E: for x, y ∈ Z, xE y iff some (and thus any) element of y has
an immediate component which belongs to x. Just as the natural order on the
ordinals is a well-ordering, so the “membership” relation E turns out to be a
well-founded extensional relation (it does not have a top). Each element x of Z
has an associated component of E, a well-founded extensional relation with x as
top. One might suppose that this relation would itself have isomorphism type
x, but it actually has isomorphism type T2(x): the T operation on elements of
Z takes the isomorphism type of a relation R to the isomorphism type of the
relation {({x}, {y}) | xR y}, which is easily seen to be a well-founded extensional
relation with top if R is, but which is not necessarily isomorphic to R. It is
straightforward to show that the “membership” relation E commutes with this
T operation.

The comprehension principle satisfied by the “membership” relation E is
not restricted by stratification (E, after all, is a set, so “unstratified” formulas
in E define subsets of Z as good as those defined by “stratified” formulas in
E). The restriction, as in Zermelo-style set theory, is one of “limitation of size”.
The question for each set S ⊆ Z is whether there is an element s ∈ Z such that
the preimage of s under E is precisely S. Clearly this cannot be true for Z itself
(by well-foundedness of E). But for any set S ⊆ Z, there is an element s which
has as its preimages under E exactly the T(s)’s for s ∈ S. The reason for this
is as follows: the obstruction to finding an element s for a set S which is “too
large” is (roughly speaking) that one cannot form disjoint representatives of the
isomorphism classes belonging to S if S is “too large”. For any element R of a
class T(s), one can choose an element R′ of the class s (note that the type of R′

is one less than the type of R, and the same as the types of the elements of the
domain and range of R) and replace each element a of the domain and range of
R with the pair (a,R′); this (well-typed) process, carried out on each T(s) with
s ∈ S, gives disjoint representatives of each of the classes T(s); one can take
their union, add a new element as top, and perform an extensional collapse to
construct a uniquely determined element of Z with exactly the T(s)’s for s ∈ S
as its “elements” in the sense of E.

The set Z with the “membership” relation E is a model of ZFC − Power
Set + “there is a largest cardinal”; it can be thought of as a model of the sets
hereditarily of the cardinality of the universe (of the model of NFU )

For a more detailed discussion of these considerations, see Roland Hinnion’s
Ph. D. thesis [7] (where these ideas were first treated in the context of NF ),
our recent book [11], or Solovay’s preprint [19]. In our book [11], we concern
ourselves primarily with a set Z0 which may be characterized as the largest
complete rank Vα coded in Z.

The comprehension principle for collections of elements T(s) of Z is suf-
ficient to establish that every set of Cantorian elements of Z (fixed points of
the T operation) is itself represented by an element of Z, and, further, that
every collection of strongly Cantorian elements of Z (these are exactly the fixed
points of T every iterated preimage under E of which is also fixed under T)
is represented by an element of Z, which is itself easily shown to be strongly
Cantorian itself (this last is not necessarily true for collections of Cantorian el-
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ements). To see this last point, note that there is a function f which is a set
such that f(T(s)) = {s} for every s ∈ Z. Note that for any strongly Cantorian
element x of Z, the isomorphism type of the component of E associated with
x is x itself; the map f witnesses the strongly Cantorian character of the full
domain of all such components uniformly. It is clear that if the component of
E associated with x has all immediate components strongly Cantorian, f will
witness the strongly Cantorian character of all these components at once, and
of the component associated with x itself as well.

We now prove an important

Theorem: NFUB− proves that the (proper class) collection of the strongly
Cantorian elements of Z with the membership relation E interprets ZFC ;
an obvious corollary is that the same is true for NFUB with the qualifier
“strongly” omitted.

Proof: The axioms of Foundation and Extensionality obviously hold.

The interpretations of the axioms of Pairing and Union in the strongly
Cantorian elements of Z involve easy “graph manipulations”: for pairing,
it suffices to make disjoint copies of two relations representing the two
elements of Z to be “collected”, add a new top, and apply an extensional
collapse; the resulting relation is easily seen to be strongly Cantorian. For
union, take a relation representing the element of Z of which a “union” is
to be taken, delete the links between its top and the tops of its immediate
components, and link the top with the tops of the immediate components
of its immediate components. It is again easy to show that the resulting
relation is strongly Cantorian, and its type will be the desired “union”.

Showing that Choice holds, given Pairing, is strictly a technical exercise:
one builds a relation coding a collection of pairs defined by reference to
an actual well-ordering of the immediate components of a relation repre-
senting the element of Z which we are “well-ordering” in the interpreted
set theory.

Infinity is provided because we have the Axiom of Counting (which gives
us infinite strongly Cantorian sets).

Separation is a special case of Replacement, which we now consider.

First, we observe that the Axiom of Small Ordinals can be “transferred”
from the strongly Cantorian ordinals to the strongly Cantorian elements
of Z. To see this, observe that any map from an initial segment of the
ordinals onto a non-Cantorian rank in Z which is increasing (not strictly,
of course) with respect to rank will put the strongly Cantorian ordinals in
one-to-one correspondence with the strongly Cantorian elements of Z. It
is also important to note that any rank at which a new strongly Cantorian
element appears has all elements strongly Cantorian. This bijection can be
used to ensure that any definable (possibly proper) class of strongly Can-
torian elements of Z is the intersection of the class of strongly Cantorian
elements of Z with some set.
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Now suppose that for each “element” a of a strongly Cantorian element A
of Z there is a unique strongly Cantorian element b of Z such that φ, where
φ is an arbitrary formula in the language of NFU (this will cover the cases
of all formulas in the interpreted set theory); the Axiom of Replacement
asserts that all such elements b make up a set. The class of codes in Z of
all pairs (a, b) (using the Kuratowski pair as coded in Z) of an “element” a
of A and the corresponding b such that φ is a class of Cantorian elements
of Z. By the Axiom of Small Ordinals (transferred to Z), this class is the
intersection of some set C with the class of strongly Cantorian elements
of Z. First, let C ′ be the intersection of C with the collection of elements
of Z which code pairs with first projection an element of A. Now let C ′′

be the function with domain A obtained by taking for each element a of
A only those codes of pairs with first projection a for which the second
projection is of minimal rank; this will pick out just the unique b such that
φ for that choice of a, since all other second projections associated with
a will be non-strongly-Cantorian, so of higher rank. The “range” (in the
obvious sense) of C ′′ will be the desired set; any set of strongly Cantorian
elements of Z is coded by a strongly Cantorian element of Z.

The proof is complete.

NFUB− is even stronger than this result indicates, as the next two theorems
will show. Recall that Kelley-Morse set theory KM is the theory extending
ZFC in which proper classes are admitted as first-class objects: instances of
Replacement (and so of Separation) and of class comprehension are allowed to
contain quantifiers over all classes.

Theorem: The strongly Cantorian elements of Z with “membership relation”
E are the sets of an interpretation of Kelley-Morse set theory.

Proof: The subsets of Z in NFU may be used as (non-unique) codes for their
intersections with the class of strongly Cantorian elements of Z, and are
our candidates to code the classes of KM . Equality of classes will be
interpreted by the relation holding between subsets of Z with the same
strongly Cantorian elements. Every proper class of strongly Cantorian
elements of Z is coded by some set, by the Axiom of Small Ordinals.
Thus, we can code assertions about proper classes of the interpreted set
theory as assertions about sets of NFU ; these assertions can then be used
themselves to define proper classes (by a direct use of the Axiom of Small
Ordinals) or sets by Replacement (note that any formula of the language
of NFU is allowed in our proof of Replacement).

The proof is complete.

Theorem: The proper class ordinal in the interpreted Kelley-Morse set theory
is weakly compact.

Proof: The proper class ordinal κ in the interpreted Kelley-Morse set theory
is obviously an inaccessible cardinal (using the definition of cardinal ap-
propriate to ZFC and KM ).
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To show that it is weakly compact, it suffices to show that any binary tree
of size κ has a branch of length κ. A binary tree of size κ is coded in NFU
by a class of pairs of strongly Cantorian ordinals (as represented in Z).
This class is the intersection of the class of strongly Cantorian elements of
Z with some set T . There are arbitrarily high strongly Cantorian ranks in
Z whose intersection with T is a binary tree on ordinals; thus, there must
be a non-Cantorian rank in Z whose intersection T ′ with T is a binary
tree on ordinals (otherwise the set of ordinals dominated by the index of
some such rank would be the proper class of strongly Cantorian ordinals,
which is absurd). Take any element of non-strongly-Cantorian rank in the
tree T ′; the branch through T ′ to that element codes a branch of length
κ in the coded binary tree of size κ.

We proved this independently of Solovay and in a very similar way, but
the details of this nice proof are due to Solovay in [19].

Solovay points out in [19] that one can simulate the construction of L in
Kelley-Morse set theory sufficiently to obtain an interpretation of ZFC − Power
Set + V = L + “there is a weakly compact cardinal” in KM + “the proper
class ordinal is weakly compact”.

Solovay has proved the following result:

Theorem (Solovay): The consistency strength of NFUB (and, by our results
above, of NFUB−) is exactly that of the theory ZFC − Power Set + “there
is a weakly compact cardinal”.

For the interpretation of NFUB in ZFC − Power Set + “there is a weakly
compact cardinal”, see Solovay’s electronically available preprint [19]. Note that
our development above combined with Solovay’s result show that NFUB and
NFUB− have precisely the same consistency strength.

6 Putting it all together: NFUM

The final system we consider in this paper is the extension NFUM (M for “mea-
sure”, for reasons which will become evident) of NFUB obtained by adding
the Axiom of Large Ordinals (this is equivalent to adding the Axiom of Large
Ordinals to NFUB−, since the Axiom of Large Ordinals implies the Axiom of
Cantorian Sets). The results about models of this system and its consistency
strength are ours. NFUM is the full system of our book [11].

6.1 A model of NFUM

In this section, we construct a model of NFUM , known as the “BEST model”
(both because it is the best model and because it was presented at a session of
the Boise Extravaganza in Set Theory (BEST)), on the assumption that there
is a measurable cardinal κ.
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We work in ZFC with a measurable cardinal κ. We recall the construction
of an elementary embedding from the universe V into an inner model M : using
the measure on subsets of κ as an ultrafilter, build an ultrapower of V . Since
the ultrafilter is countably complete, the ultrapower will be well-founded; we
can thus carry out a transitive collapse of the ultrapower to an inner model M
of ZFC . The usual elementary embedding of a set or class into its ultrapowers
via equivalence classes of constant functions yields an elementary embedding j
of the universe V into the inner model M . The measurable κ is sent by j to a
larger ordinal j(κ). See [12], after p. 305, for details.

We define a nonstandard model of the full theory of Vλ, where λ = lim ji(κ).
The elements are all those functions s with domain a tail [n,∞) of N (or all
of N ) with the property that s(n) ∈ jn(Vλ) and s(n + 1) = j(s(n)) whenever
s(n) is defined, and that if j−1(s(n)) exists and n > 0, then s(n− 1) is defined
and equal to j−1(s(n)). The membership relation “s ∈ t” on this structure is
defined by “for all sufficiently large n, s(n) ∈ t(n)”; all other predicates of the
full language of Vλ can be defined analogously. It should be clear that the set of
s for which s(0) is defined is isomorphic to Vλ and an elementary substructure
of the whole: the whole structure is a direct limit of the ji(Vλ)’s using j as the
embedding of each in the next.

The map J defined by J(s)(n) = s(n+ 1) is an automorphism of this model
which moves the element α with α(0) = κ (for example) upward. The model
of NFU that we construct has as elements the “elements” in terms of this
structure of the model element s with s(0) = Vκ (i.e., Vα) and as membership
relation “x ∈NFU y” the relation (in terms of this nonstandard structure) x ∈
J(y) ∧ J(y) ∈ Vα+1; this is a case of the general model construction defined for
NFU above.

It should be clear that this structure is a model of NFU ; it remains to
demonstrate that it is a model of NFUM .

This model has two kinds of elements: elements s with s(0) defined, which
will then have s(0) ∈ Vκ and so have s(0) = j(s(0)); these elements make up
a structure isomorphic to the standard Vκ. These elements are fixed points
of J and dominate only fixed points of J (and so are Cantorian and indeed
strongly Cantorian in the model of NFU ). The other elements are elements s
with dom(s) = [n,∞) for some n > 0; call the number n char(s).

We verify that the Axiom of Large Ordinals holds in the model. The ordinals
of the model will be in one-to-one correspondence with (though they will not
be the same objects as) the ordinals of the underlying structure which are in
the model. For simplicity’s sake, we deal with the latter. Also for simplicity,
we refer to the ordinal represented by the model element s with s(1) = κ as
Ω, though it does not correspond to the true Ω of the model; we will explain
below why this is harmless. There are, of course, ordinals of the first kind,
with s(0) = α < κ. These are fixed by J and are the strongly Cantorian
ordinals of the model. The other ordinals s of the model have char(s) > 0 and
s(char(s)) ≥ κ, so s(char(s) + 1) ≥ j(κ) . Such an element will be greater than
J−char(s)−1(Ω), which has value κ at char(s) + 1 and is undefined below that
point. Since Jn(Ω) interprets Tn(Ω) for each n, this shows that the ordinals
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Ti(Ω) are coinitial in the non-Cantorian ordinals of the model, so in fact the
ordinals Ti(α) are coinitial in the non-Cantorian ordinals of the model for any
non-Cantorian ordinal α of the model, and so the same holds true for the true
Ω (the order type of the ordinals), whether that is to be identified with our
Ω of convenience or not (in fact, it is not). This establishes the claim of the
paragraph.

We verify that the Axiom of Small Ordinals holds in the model. It is sufficient
to show that every subclass of the elements of the first kind (those with s(0)
defined) is the intersection of the class of elements of the first kind with some
set. Let C be any subset of the true Vκ; there is an element of the underlying
structure with c(0) = C. c is in the model only if C ∈ Vκ itself, but the object
J−1(c) with c(1) = C is always a model element (C ∈ j(Vκ) holds for any
C ∈ Vκ+1) and has exactly the correct elements of the first kind.

This model is the source for most of our “intuition” about NFUM , though
it turns out that the assumption of a true measurable cardinal is more than is
needed, as we will see below. An interesting aside about this model: it models
something very much like the “theory of concepts” which Wang sketches as the
possible realization of a project of Gödel in [22], p. 310, though there seem to be
infelicities in Wang’s formulation. Wang’s idea is to implement “concepts” as
elements of a model of stratified comprehension without extensionality in which
there is a “downward closed” extensional well-founded part of the membership
relation whose domain is a model of ZFC (he calls this the domain of “sets” as
opposed to concepts in general); the “best” model fulfils this description (the
analogue in the model of the standard Vκ is the maximal downward closed ex-
tensional well-founded part of the membership relation excluding urelements,
and it is of course a model of ZFC ). This result can probably be achieved in an
extension of NFU with lower consistency strength, but Wang makes the addi-
tional stipulation that the replacement scheme for the “sets” include instances
for all formulas in the full language of the system of concepts (not just the re-
stricted language of the domain of sets), which appears to require considerable
strength, though maybe not quite that of the Axiom of Small Ordinals. Any
model of NFUM can be converted to a model with these characteristics by a
suitable application of permutation techniques standard in the area of NF -like
theories (see [3] for a treatment) to convert the E relation on the Cantorian
part of Z to a “downward closed” part of the true membership relation.

6.2 Interpreting KMU in NFUM

The results of this section come from an attempt to “reverse engineer” the
construction of the previous section and recover the measurable cardinal κ of
the construction of the “best” model starting with an arbitrary model of NFUM .

Of course, since NFUM is an extension of NFUB−, it interprets KM in the
same way that NFUB− does. It turns out that we can do rather more in NFUM ,
because the Axiom of Large Ordinals enables us to refine our coding of classes
of Cantorian objects (since the Axiom of Cantorian Sets holds, “Cantorian” and
“strongly Cantorian” are equivalent notions, and we will use the shorter term).
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Definition: On any set which supports a T operation (ordinals, cardinals, el-
ements of Z) we define a natural set as a subset A of the T-carrying set
with the property that for each x in the T-carrying set, x ∈ A iff T (x) ∈ A.
(Compare with the definition of “semi-natural set” above).

Theorem (NFUM ): Each class of Cantorian ordinals is coded by a unique
natural set. (The same result applies to cardinals or elements of Z).

Proof: Certainly any natural set codes some uniquely determined class.

We need to show that two distinct natural sets A and B cannot code
the same class of Cantorian ordinals. To see this, consider the smallest
element x of the symmetric difference of A and B. T(x) will also belong
to the symmetric difference of A and B, and so must either be greater
than x or equal to x by minimality. If T(x) = x, then x is Cantorian and
the two natural sets do not code the same class. If T(x) > x, then T−1(x)
exists, is less than x, and also belongs to the symmetric difference of A
and B (by naturality of these sets), contradicting minimality of x.

We need to show that every class is coded by at least one natural set (and
so, by the previous paragraph, by exactly one natural set). Choose a class
C. By the Axiom of Small Ordinals, the class C is coded by some set A. If
A is natural, we are done. If A is not natural, then consider the minimal
element x of the symmetric difference of A and T[A] (the elementwise
image of A under the T operation). By the Axiom of Large Ordinals,
there is a natural number n such that Tn(Ω) < x. The set T−(n+1)[A] is
the desired natural set (this last assertion relies on the effective reasoning
about T-sequences made possible by the Axiom of Small Ordinals).

The proof is complete.

This result enables us to define a “measure” on classes of Cantorian ordinals,
which translates to a “measure” on the proper class ordinal in the interpreted
KM (it is not hard to show that there is a precise correspondence between the
ordinals in a model of NFUM and the codes for von Neumann ordinals in Z,
which preserves the property of being strongly Cantorian; the set of codes of
von Neumann ordinals in Z is the natural set which interprets the proper class
ordinal of KM ).

Definition: We say that a class C of Cantorian ordinals is “of measure 1” if
the natural set of ordinals coding C contains Ω (the order type of the
ordinals). If a class is not of measure 1, we say that it is “of measure 0”.

The choice of Ω is natural but immaterial; any non-Cantorian ordinal would
serve as well.

We claim that this measure on the proper class ordinal κ is a κ-complete
nonprincipal ultrafilter; it requires a little work to show that we can even say
this, since a measure in the usual sense would belong to Vκ+2, and we only have
access to Vκ+1 (the sets of the interpreted KM make up Vκ, and the proper
classes fill out Vκ+1).
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The trick is to observe that we can, in KM , code sequences of length κ of
elements of Vκ+1: we code a sequence {Aα}α<κ as the class {〈α, x〉 | x ∈ Aα},
where 〈α, β〉 represents a coding of pairs of Cantorian ordinals as Cantorian
ordinals (such a pair is easy to define; there is a description of one such in [11]).

Given this machinery, we can assert (as a definition) that a superclass (pred-
icate of classes) U is a κ-complete nonprincipal ultrafilter on κ iff the following
conditions hold:

1. Each A such that U(A) is an infinite class of ordinals.

2. If A ⊆ B and U(A), then U(B).

3. If each element of a sequence {Aα}α<γ , where γ < κ, satisfies U(Aα),
then U(

⋂
Aα). (It is easy to see that

⋂
Aα is definable in KM and must

be a class).

4. For every class A, either U(A) or U(Ac).

We define KMU as the theory KM + “there is a κ-complete nonprincipal
ultrafilter on the proper class ordinal κ”; KMU has an additional primitive
predicate U of classes (the ultrafilter) which can be used freely in definitions of
classes and sets. We hope that the use of the suffix “U” for “ultrafilter” here will
not conflict in anyone’s mind with its use for “urelement” in the name “NFU ”.

We now complete the demonstration that NFUM interprets KMU , with “is
of measure 1” as the predicate of classes coding the ultrafilter. We use the same
headings as above.

1. Each A such that U(A) is an infinite class of ordinals: clearly each nat-
ural set containing Ω codes an infinite class of Cantorian ordinals (the
requirement that every A such that U(A) be infinite rules out principal
ultrafilters).

2. If A ⊆ B and U(A), then U(B): the natural set coding a superclass of a
given class will be a superset of the natural set coding the given class: a
superset of a set containing Ω also contains Ω.

3. If each element of a sequence {Aα}α<γ , with γ < κ, satisfies U(Aα), then
U(

⋂
Aα): the sequence of classes, because it is not of full length κ, is

coded by a set of natural sets containing Ω, whose intersection will be a
natural set containing Ω coding the intersection of the sequence of classes:
the natural set coding the subclass of γ × κ (as coded into the ordinals)
which codes the sequence will have γ natural sets as “rows” (this would
not work if the sequence went all the way out to κ, because the natural
set coding the sequence would have additional “rows” with non-Cantorian
indices which would not necessarily be natural).

4. For every class A, either U(A) or U(Ac): the natural set coding the com-
plement of a class is the complement of the natural set coding the given
class; exactly one of these natural sets will contain Ω.
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This establishes the claim of this section: NFUM interprets KMU .
Solovay has convinced us that enough of the construction of L[U ] can be

carried out in KMU to obtain an interpretation of ZFC − Power Set + “the
largest cardinal has a class measure U” + “V = L[U ]” (with the proviso that the
class measure may be alluded to in instances of Separation and Replacement).
Details of this are not given here.

6.3 Interpreting NFUM in KMU

Our approach to interpreting NFUM in KMU will be to reproduce the con-
struction of the “best” model of NFUM with the more restricted set-theoretic
resources available in KMU .

The superclass (!) structure which we will use to interpret NFUM will be a
direct limit of ultrapowers. Of course, since superclasses are not really objects
in KMU , this construction needs to be carried out with extreme care.

On any superclass A with an associated notion of equivalence on its elements,
we construct an ultrapower as follows: the elements of the ultrapower will be
elements of “Aκ” (the superclass of “sequences of length κ” of elements of A; we
have seen above how to code sequences of classes of length κ as single classes);
two elements A and B of the ultrapower will be considered equivalent iff the
class of all indices α such that Aα is equivalent to Bα belongs to U . For technical
reasons, we eliminate all κ-sequences with all terms eventually the empty set,
except for the empty set itself (this ensures that the iterated ultrapowers Ui
below will be disjoint (except for the shared empty set), and it does no damage
to the ultrapower, since the omitted objects all represent the empty set anyway).

All structure on the superclass A is inherited by the ultrapower on A in the
usual way; every predicate and relation of the full language on A which respects
the associated equivalence relation has a natural analogue on the ultrapower,
and the “map” sending elements of A to their constant κ-sequences is an ele-
mentary embedding of A (with its full language mod the equivalence relation)
into the ultrapower (with the same language).

We let U0 = Vκ (with equality as the associated notion of equivalence),
while Un+1 = the ultrapower on Un for each n ∈ N (with its natural equivalence
relation defined above). Each Ui except the first is a superclass, but all elements
of any Ui’s are classes. The direct limit U∞ of the Ui’s can be considered as
the union of the Ui’s; it inherits the equivalence relation of each Ui and also
stipulates that each element of a Ui is equivalent to the associated constant
sequence in Ui+1.

All structure on Vκ describable in its full language is inherited by each Ui
and by U∞ for the usual model-theoretic reasons. We need to confirm that
membership in the “superclass” U∞ and equivalence in U∞ are definable by
formulas in the language of KMU , since superclasses are not really objects in
KMU .

It is clear that for any class A and ordinal subscript α, Aα is definable. Let
s be a finite sequence of ordinals. We define As as A if s is the empty sequence;
otherwise we define s− as the sequence obtained by dropping the last term sn
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of s and define As as (As−)sn . We can then express A ∈ Un as “either A is
empty or every As with the length of s equal to n is in Vκ, while every As with
shorter s is either empty or a κ-sequence with κ nonempty terms.” It is clear
then that membership in U∞ is definable in KM , since membership in the Un’s
is uniformly definable.

Defining the equivalence relation on Un uniformly involves a trick. If A and
B are both elements of the same Un, we proceed as follows: let K be the class
of all finite sequences of ordinals s of length n such that As = Bs. Now define
a class S of pairs with first projection a natural number and second projection
a finite sequence of ordinals as follows: (0, x) ∈ S iff x ∈ K; we define x conc y,
where x is a finite sequence and y is an ordinal, as the result of extending the
sequence x by adding y at the end, and provide that for each n, (n+1, x) ∈ S iff
{y | (n, x conc y) ∈ S} ∈ U . This kind of inductive definition of a class succeeds
in KMU (because it is allowed in KM with any predicate of classes in place of
U). It is straightforward to verify that A is equivalent to B in the sense of Un
iff the pair (n, ()) of n and the sequence () of length 0 belongs to the class S,
which is uniformly definable in terms of A and B, so the equivalence on Un is
expressible in terms of KMU .

Two elements A and B of Um and Un, with m < n, are equivalent in the sense
of U∞ iff the (n −m)-fold iterated constant sequence of A in Un is equivalent
to B in the sense of Un; it is clear from the discussion above that this can be
expressed in the language of KMU .

It follows that the superclass U∞ and its associated notion of equivalence are
represented by predicates of the language of KMU . It should be clear that all
predicates of the full language of Vκ are represented by predicates in U∞ which
respect the notion of equivalence, and that U∞ mod its equivalence relation is
an elementary superstructure of Vκ.

We claim further that there is an endomorphism J on U∞ which moves a
nonstandard ordinal of U∞ downward. The endomorphism is induced by the
map J which sends all elements of Vκ = U0 to their constant sequences in U1 and
sends each element {Aα}α<κ of Un (n > 0)) to the element {J(Aα)}α<κ of Un+1.
The ordinal δ which is moved is the element of U1 determined by the “diagonal
sequence” Aα = α; it is moved downward to the element of U2 determined by the
sequence whose αth member is the constant sequence of α; it is straightforward
to verify that this is a smaller ordinal: each of its terms is a “standard” ordinal
in U1, and so is less than the nonstandard ordinal in U1 coded by the diagonal
sequence. It should be obvious that J is an endomorphism. J(A) can be more
economically described: for any finite sequence s of ordinals, define s− as the
sequence obtained by dropping the first element: J(A) is then characterized by
J(A)s = As− ; from this we can see that the superclass map J can be described
in the language of KMU .

We include some informal discussion of what the “nonstandard model” U∞
is like. U1 is a nonstandard model of Vκ in which all new elements are of rank
above all the standard ranks (U1 is an end extension of Vκ). An example of a
new ordinal added in U1 is the ordinal δ determined by the “diagonal sequence”
Aα = α. U2 in its turn is a nonstandard model of U1 (an elementary extension
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of U1 for the properties of U1 expressed in the full language of Vκ in its capacity
as being itself an elementary superstructure of Vκ); the ordinal J(δ) such that
J(δ)α is the constant sequence of α is (from the standpoint of U1) a “new”
nonstandard ordinal appearing above all the standard ordinals and below all
the nonstandard ordinals in U1. The same phenomenon occurs at each step
of the construction: the ordinal Jn(δ) ∈ Un+1 appears above all the standard
ordinals < κ and below all nonstandard elements of Un.

As we observed earlier in the paper, it takes only a slight modification of
the model construction for NFU to use an endomorphism downward in place
of an automorphism upward: if Vα is the domain of the model (with J(α) < α)
define x ∈NFU y as J(x) ∈ y ∧ y ∈ VJ(α)+1. We use the ordinal δ defined above
in the role of α in this definition.

The arguments for the Axiom of Large Ordinals and the Axiom of Small
Ordinals which follow are essentially the same as the arguments that these
axioms hold in our “best” model described above: U∞ is essentially the same
structure as the “best” model, constructed without the advantage of being able
to carry out transitive collapses of ultrapowers onto inner models.

We claim that the Axiom of Large Ordinals holds in this model. An ordinal
in U0 is fixed by J and strongly Cantorian in the model (Cantorian because
fixed and strongly Cantorian because everything below is fixed.) If δ is the
ordinal in U1 determined by the diagonal sequence, any ordinal of the model
in Un − Un−1 (i.e., new in Un) will dominate the ordinal Jn(δ) in Un+1 (which
from the standpoint of Un is “just larger” than the “standard” ordinals in U0);
this establishes the claim of this paragraph, since it shows that the iterated
images under T of δ (or of any non-Cantorian ordinal) will be coinitial in the
non-Cantorian ordinals.

We claim that the Axiom of Small Ordinals holds in this model. The strongly
Cantorian ordinals of the model are exactly those in Vκ. Observe that any class
of strongly Cantorian ordinals defined in terms of the model U∞, its equivalence
relation and the automorphism on it will be describable in the language of KMU
and so will be a class of ordinals in KMU . It is sufficient to show that there
is a set in our model with its strongly Cantorian members exactly those in
an arbitrarily chosen class C of ordinals of KMU . The class C will not be in
our model unless it is actually an element of Vκ itself. But the element of U1

defined by Cα = C∩α will belong to the model and have precisely the Cantorian
elements (i.e., elements in U0) that C has, completing the proof of the claim.

6.4 Concluding Remarks about NFUM

We summarize the work of this section in a

Theorem: The consistency strength of NFUM is exactly the same as the con-
sistency strength of KMU ; each of these theories interprets the other.

Some work remains to be done. A pithy statement of the precise consistency
strength of NFUM analogous to Solovay’s theorems would be nice. It is quite
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high, but below ZFC + “there is a measurable cardinal”: an argument from
the construction of L[U ] along class well-orderings in KM appears to give the
result that NFUM has the same strength as “ZFC − Power Set + there is
a class measure U on the largest cardinal” with the proviso that U can be
mentioned in instances of Separation and Replacement; this is analogous to
Solovay’s formulation for NFUB , but does not seem quite as satisfactory, since
this theory has the same odd feature as KMU that the “measure” needs to be
introduced as a primitive notion of the theory: the existence of such a “measure”
is not directly expressible in the language of ZFC !

NFUM seems to be almost as strong a “natural” extension of NFU along
these lines as one can come up with; the one further idea we can see is to exploit
the unique coding of classes of ordinals of the interpreted KM as natural sets
and try to formulate axioms about what collections of classes of ordinals should
be coded by sets of NFU .

We present the whole paper as further evidence for our belief, which also
motivated [11], that NFU (with extensions) is a nice supplement to the set
theorist’s usual view of the mathematical world via ZFC (with extensions).
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