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Abstract

This paper is a survey of results obtained by using the permutation
method for obtaining consistency and independence results relative to
“New Foundations” and its known-to-be-consistent variant NFU, adapted
for this purpose by Scott from the method used by Rieger and Bernays
to establish the independence of Foundation from the usual set theory. It
gives a complete account of known results about the classes of von Neu-
mann numerals, Zermelo numerals, and hereditarily finite sets in NF(U):
these can be sets but do not have to be sets since their definitions are not
stratified. The conditions under which these sets can exist are equivalent
to conditions related to Rosser’s Axiom of Counting. New results include
a model with the Axiom of Counting in which the von Neumann numerals
do not make up a set and a model of NFU in which the Zermelo numerals
make up a set, but the set is Dedekind-finite. A general characterization
of formulas which are invariant under this permutation method when set
permutations are used in NFU + Choice is given.
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1 Preliminaries: NF and NFU

In this section, we define the set theories NF and NFU .
NF was introduced by Quine in 1937, in [18], as a “simplification” of the type

theory TST to be described below. NF presents difficulties: it is not known to
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be consistent. It is not known to be inconsistent, either – rumors that NF is
inconsistent continue to circulate because of an inconsistency found in the first
version of Quine’s system ML; this system adds proper classes to NF , and the
inconsistency in ML was found and (as far as anyone can tell) repaired by Hao
Wang; the second edition [19] is corrected (and contains a discussion of the error
in the original version), and the system there is known to be consistent if NF
is consistent. NF is known to disprove the Axiom of Choice (Specker, 1953, in
[23]).

NFU is a slight (?) modification of NF due to R. B. Jensen in [14]. The
modification is the weakening of extensionality to allow urelements. The effects
are dramatic: the consistency of NFU is provable in Peano arithmetic; NFU
does not disprove Choice, and admits a hierarchy of extensions comparable in
strength to the familiar hierarchy of extensions of the standard set theory ZFC
with strong axioms of infinity (see the second author’s [10]).

The motivation for the untyped set theories NF and NFU , at least histori-
cally, lies in a type theory which we now describe. It is worth noting that either
of the two set theories can also be described independently of this type the-
ory: they admit quite natural finite axiomatizations in which type-theoretical
considerations do not appear (references are given below).

TST (the “simple theory of types”) is a multi-sorted first order theory with
sorts (called “types”) indexed by the natural numbers. The language of TST
has equality and membership as the only primitive predicates. An equality
sentence x = y is well-formed iff the types of the variables x and y are the
same; a membership sentence x ∈ y is well-formed iff the type of y is the
successor of the type of x. The motivation is that type 0 is a sort of otherwise
unspecified “individuals” (not to be confused with urelements – urelements have
no elements, while we cannot meaningfully inquire as to whether individuals
have elements), while type 1 consists of sets of individuals, type 2 consists of
sets of sets of individuals, and so forth.

The axioms of TST are extensionality (if two objects of any positive type
have the same elements, then they are equal) and comprehension (for any for-
mula φ of the language of TST and for each variable x, {x | φ} exists; the type
discipline requires that its type be one higher than that of x). The compre-
hension axiom of TST does not lead to paradox because the bad instances of
comprehension (such as “{x | x 6∈ x} exists”) correspond to formulas φ of the
language of “naive” set theory (e.g., x 6∈ x) which cannot be typed. The consis-
tency strength of TST with an axiom of infinity is the same as that of Zermelo
set theory with comprehension restricted to formulas in which all quantifiers are
bounded (∆0 formulas; this system is also called “Mac Lane set theory”: see
Adrian Mathias’s paper [15] for the equiconsistency result and for much valuable
discussion of this system).

TST is often referred to inaccurately as “the simple theory of types of Rus-
sell”. We ourselves have been frequent offenders! While it is true that TST is
equivalent in strength to the system of Principia Mathematica ([25]: hereinafter
abbreviated PM ) with the Axiom of Reducibility, or to the simplified system
due to Ramsey (in which the orders are dropped, so the Axiom of Reducibility
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is no longer needed), either of those systems has a far more complicated type
system than that of TST , because of the presence of relation types as well as
“set” types. The additional observation needed to simplify the type system of
PM to this very simple linear form, which was not made by Russell or Ram-
sey, is that relation types can be eliminated by use of the Kuratowski pair (or
another coding of ordered pairs as sets) to express n-ary relations as sets of
n-tuples in the usual way. Something like TST seems to appear first in Gödel’s
1930 paper [6] (but with the addition of the predicates and axioms of Peano
arithmetic on the domain of individuals). There is a discussion of the history
of this streamlined type theory in Hao Wang’s [24].

What Quine observed about TST (in the pure form in which no additional
assumptions are made about the individuals) is that the types seem to be in-
distinguishable. Any theorem of TST remains a theorem if the types of all
variables appearing in the theorem are raised by a uniform amount. Any object
{x | φ} definable in TST has a precise analogue in each higher type. For ex-
ample, consider Frege’s definition of the natural number 3 as the set of all sets
with three elements. In type theory, this is the appropriate definition to use.
It is used independently at each type: there is a type 2 integer 3 which is the
type 2 set of all type 1 sets of type 0 objects, and there is a type 3 integer 3
which is the type 3 set of all type 2 sets of type 1 objects, and so forth. One
cannot express in the language of TST the assertion that these are different (or
the assertion that they are the same), but the suspicion that they are really all
versions of the same thing is hard to escape. This “hall of mirrors” effect applies
to all theorems and all mathematical objects in TST . It is a very sharp form
of the phenomenon already noticed in PM and referred to there as “systematic
ambiguity”, which has more recently been called “polymorphism” in computer
science.

Quine suggested the types be dropped completely. The resulting theory
NF (“New Foundations”) is an unsorted first-order theory with equality and
membership. Its axioms are precisely the axioms of TST with all indications
of type dropped. When type distinctions between variables are suppressed in
the extensionality axioms of TST , they collapse to a single extensionality axiom
(objects with the same elements are the same). When type distinctions between
variables are suppressed in the comprehension axioms of TST , we do not obtain
the inconsistent comprehension scheme of naive set theory: we obtain exactly
those axioms “{x | φ} exists” such that there is an assignment of types to the
variables in φ which yields a well-formed formula of TST . Such formulas are
said to be “stratified”.

It is usual to give a definition of “stratified formula” which does not depend
directly on the typed language of TST .

Definition 1.1. A formula φ is said to be stratified iff there is a function type

from variables to natural numbers such that for all atomic subformulas “x = y”
of φ we have type(“x”) = type(“y”) and for all atomic subformulas “x ∈ y”
we have type(“x”) + 1 = type(“y”).

Definition 1.2. NF is the first-order theory with equality and membership

3



whose axioms are extensionality and each instance of comprehension “{x | φ}
exists” such that φ is stratified.

The stratified comprehension scheme is equivalent to a finite set of its in-
stances (the usual reference for this is [7], but there are much nicer finite axiom-
atizations, as in (for example) [12] – the axiomatization for NFU given there
requires some adaptation for use with NF ), so it is possible to axiomatize NF
(or NFU ) without reference to stratification (and so without any reference to
type, absolute or relative).

It is worth noting that a formula “{x | φ} exists” in which it is possible to
assign types to each bound variable (including x) in such a way that all atomic
subformulas which contain two bound variables are typed correctly, though it
may not be stratified (some parameters may be impossible to type), will fol-
low immediately from stratified comprehension: replacing each parameter with
distinct variables at each of its occurrences will result in a stratified formula
of which the original formula will be a substitution instance. Such formulas
are termed “weakly stratified”, and we will not systematically distinguish weak
stratification from stratification in what follows, since we also have comprehen-
sion for weakly stratified formulas.

Our actual working language will contain term constructions. To understand
how stratification works with these, observe that in TST a definite description
(ιx.φ) (“the x such that φ”) would be assigned the same type as x. Analogously,
the definition of stratification can be extended: the function type must have
values at every term (for weak stratification, at every term containing a free
variable) and type(x) = type(ιx.φ) must also hold. For any function symbol
F which can appear in stratified formulas, the type of a term F (x1, . . . , xn)
will be displaced by a fixed amount from the type of each of its arguments xi
(not necessarily the same amount for each argument). For example, a singleton
{x} has type one higher than its argument x, and a function application f(x)
(application of a set function to an argument) is of the same type as its argument
x and three types lower than the type of the set function f (if the function is
understood as a set of Kuratowski pairs; if a type-level pair is used then the
displacement is one).

Jensen’s theory NFU can be obtained by weakening the axiom of exten-
sionality to the form “Objects with elements are equal iff they have the same
elements”. This allows (but does not require) the existence of many distinct
objects with no elements.

Jensen’s original formulation didn’t allow one to distinguish the empty set
from the urelements: it is useful to introduce a constant ∅ standing for a partic-
ular object with no elements (there is at least one such object, because x 6= x is
a stratified formula), then to define “x is a set” to mean “(∃y.y ∈ x) ∨ x = ∅”.
An equivalent axiomatization of NFU takes this sethood predicate as primitive:
its axioms are an axiom of sethood, asserting that any object with an element
is a set, an axiom of extensionality asserting that sets with the same elements
are equal, and an axiom of stratified comprehension asserting for each stratified
formula φ that {x | φ} exists and is a set.
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Hereinafter by NFU we will always mean NFU augmented with a constant
representing the empty set (or with a sethood predicate) and also extended
with axioms of Infinity and Choice. The precise form of these axioms will not
be an issue for us (details can be seen in sources already cited). The usual
equivalences between forms of the Axiom of Choice hold in NFU (if they are
stated in stratifiable forms).

NF and NFU are distinctive in allowing “big” sets like the universe V =
{x | x = x}. It is important to note that the consistency problem for NF
does not stem from the presence of these “big” sets: NFU , with the same
axiom of comprehension and without the axiom of Infinity, is weaker than Peano
arithmetic, and with the addition of the axiom of Infinity is exactly as strong
as TST with Infinity (slightly weaker than Zermelo set theory). There is no
evidence that the problematic NF is any stronger than TST with an axiom
of infinity (NF proves infinity because it disproves choice: if the universe were
finite, it could be well-ordered. NFU does not prove Infinity: it is consistent
with NFU that the cardinality of the universe is a (necessarily nonstandard)
natural number). A complete development of set theory as a foundation for
mathematics using NF is found in Rosser’s [21]; a briefer development is found
in the first author’s more readily available [5]; one could consult the second
author’s [12] for a development of elementary set theory in NFU .

We need a brief introduction to ordinals in NF(U). A well-ordering is defined
in NFU in the usual way. The order type of a well-ordering is the set of all
well-orderings isomorphic to that well-ordering. A set is an ordinal number just
in case it is the order type of some well-ordering. It is useful to be aware that
we take our well-orderings to be non-strict (≤ rather than <) or we would be
unable to distinguish between the ordinals 0 and 1.

The ordinals make up a set, which is well-ordered by the natural order on
ordinal numbers, which is also a set, and so there is an order type Ω of the nat-
ural well-ordering on the ordinals, and one might suspect that the Burali-Forti
paradox would put an end to our whole program. Briefly, this is not the case
because the argument of the Burali-Forti paradox depends on the proposition
that the order type of the natural order on ordinals restricted to the ordinals
less than an ordinal α is equal to α. This statement appears easy to prove by
transfinite induction – but this does not work, because the condition “the order
type of the natural order on the ordinals less than α belongs to α” is unstratified
and does not define a set.

For any well-ordering W , we define W ι as {〈{x}, {y}〉 | xW y}. It is easy
to prove that if W is a well-ordering, so is W ι. Note that W ι would be one
type higher than W in TST . If α is the order type of W , we define T (α) as the
order type of W ι (it is straightforward to prove that the value of T (α) does not
depend on the choice of W ∈ α). T (α) is one type higher than α.

Now it is possible to prove by transfinite induction that the natural order
on the ordinals less than α has order type T 2(α) (the double application of
the T operation makes the formula stratified, so the argument by transfinite
induction works). The Burali-Forti argument converts to an argument that Ω
is the supremum of the set of all ordinals T 2(α), which means that Ω > T 2(Ω),
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which is counterintuitive but not impossible. In fact, the analogous assertion is
provable in TST (where the two occurrences of “Ω” have different types).

It is easy to see that the T operation respects order (in fact, it is an endo-
morphism of the ordinals into an initial segment of the ordinals, respecting all
standard operations on the ordinals) from which it follows that the sequence
Ω, T 2(Ω), T 4(Ω), . . . is a descending sequence in the ordinals. This is not a
contradiction, because this sequence is not a set (its definition is not stratified).

Natural numbers are defined in NF(U) following Frege: 0 is defined as the
set {∅} (the set of all sets with 0 elements – notice that in NFU this is not
taken to include the urelements) and for any set A we define A + 1 as the set
of all sets A ∪ {x} with x 6∈ A (the set of all disjoint unions of elements of
A with singletons). We say that a set I is inductive just in case 0 ∈ I and
(∀A.A ∈ I → A + 1 ∈ I}, and we define the set N of natural numbers as the
intersection of all inductive sets. To see that all this reasoning is stratified, it is
sufficient to observe that it all makes perfect sense in TST . For each concrete
natural number n, n will be defined as the set of all sets with n elements. It is
of course impossible to rule out the presence of nonstandard natural numbers
(but Jensen did show in [14] that NFU has ω-models).

The cardinality |A| of a set A is defined as the set of all sets B such that
there is a bijection between A and B. Note that the cardinal of A would be
one type higher than A in TST . It is easy to prove that each natural number
is a cardinal number (is the cardinal of each of its elements, in fact), so “finite
cardinal” means the same thing as “natural number”. Finite ordinals are not the
same thing as finite cardinals (natural numbers), but the natural isomorphism
exists.

Definition 1.3. For any set A, we define ι“A as {{x} | x ∈ A}, the image of
A under the singleton operation. It is useful to note that ι“A is one type higher
than A if the definition is interpreted in TST. For any cardinal number |A|,
we define T (|A|) as |ι“A| (there is an easy theorem which needs to be proved
to verify that this is actually a definition). It might seem that T is a trivial
operation, but this is not the case. Note that T (|A|) is one type higher than
|A| if things are understood in terms of TST. (It is worth noting that appeal
to TST makes sense for NFU as well as for NF: NFU has an associated type
theory TSTU in which urelements are permitted to occur along with sets in each
positive type).

There is of course a close relationship between the T operation on cardinals
defined here and the T operation on ordinals defined above.

The Cantor paradox is avoided because the Cantor theorem does not take
its usual form |A| < |P(A)|. In fact, there is no reason to expect it to take this
form, because this is an unstratified assertion: the power set of A is one type
higher than A in TST . The theorem which can be proved in NF(U) (and in
TST ) is |ι“A| < |P(A)|. The special case A = V which leads to the Cantor
paradox in naive set theory here gives us the theorem |ι“V | < |P(V )|, which
tells us that the set of singletons is smaller than the universe (or than the set
of all sets, in NFU ). This is not contradictory: the natural bijection (x 7→ {x})
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between these sets has an unstratified definition, so we need not expect it to be
a set (and this argument proves that it is not).

The exponential function exp(|A|) = 2|A| is not defined as |P(A)|, because
|A| and |P(A)| are not at the same relative type, and exp if defined this way
could be proved not to be a set function: The correct way to define exp(|A|) is
as T−1(|P(A)|). This will not always be defined, as T−1 is partial. Note that
exp(T |A|) = |P(A)| by definition, and so |T (|A|) < exp(T (|A|)) by Cantor’s
theorem as formulated above; it is a theorem that |A| < exp(|A|) in general as
well.

Sets A such that |ι“A| = |A| satisfy the usual form of Cantor’s theorem,
and so are called cantorian sets. Sets A such that the map (x 7→ {x})dA,
the restriction of the singleton map to A, is a set, are obviously cantorian
and are called strongly cantorian sets. Cardinal numbers of cantorian sets are
called cantorian cardinals. Ordinal numbers of well-orderings W such that W is
isomorphic to W ι are called cantorian ordinals (it is not the case that the order
type of a well-ordering of a cantorian set is necessarily a cantorian ordinal: for
example, if a natural number n 6= T (n) the ordinal ω+n is a noncantorian order
type of a well-ordering of a cantorian set). Ordinal numbers of well-orderings of
strongly cantorian sets are called strongly cantorian ordinals; the isomorphism
between W and W ι will be witnessed by a restriction of the singleton map if
the domain of W is strongly cantorian.

Variables restricted to strongly cantorian sets can have their type manipu-
lated freely. Let A be a strongly cantorian set, let σ be the restriction of the
singleton map to A (a set function) and let x be any variable restricted to A:
one can replace references to x with references to the sole element of σ(x) (one
type lower than the original reference to x) or with references to σ−1({x}) (one
type higher than x). The effect of this is that variables restricted to strongly
cantorian sets may have each occurrence independently assigned any desired
type for purposes of stratification.

2 Preliminaries: Permutation Methods

The history of the application of permutation methods to NF begins with an
oversight of Quine’s in the original 1937 paper [18]. Quine was aware that his
choice of strong extensionality (instead of the weak extensionality adopted by
Jensen for NFU which would allow urelements) was open to challenge. He sug-
gested that the difference between strong and weak extensionality was inessential
because any non-sets one might want to talk about could be assigned their own
singleton as an extension. This is a harmless way to enforce strong extension-
ality in Zermelo set theory or its extensions, but it is not harmless at all in
NF , where it is a theorem that the class of singletons is smaller in cardinality
than the universe. All known models of NFU have the cardinality of the set of
urelements equal to the cardinality of the universe, so Quine’s trick cannot be
used to eliminate the urelements.

For this reason, objects x = {x} are called “Quine individuals” or “Quine
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atoms” in the NF literature (with “individual” or “atom” being used here in
the same sense as our “urelement”, to mean a non-set; “individual” was Scott’s
original terminology, but we will use “atom” to avoid confusion with the use of
“individual” for type 0 objects in TST ). Dana Scott, in [22], investigated the
question of consistency and independence of the existence of Quine atoms using
a permutation method which we now describe, which has been until recently
almost the only method known for consistency and independence results from
NF (the entire panoply of modern methods can be adapted to NFU , since
its model theory is better understood; the second author has recently shown
(in [11]) that forcing can be implemented in NF , though the inconsistency of
Choice with NF limits the usefulness of forcing for establishing consistency and
independence results with NF ). Scott’s investigation was continued by Henson
in [8], and results along similar lines have been obtained by later workers.

In the rest of this section, we introduce the method of Scott and prove some
of his theorems about Quine atoms as examples. The notation we use will be
taken from [5]. The formal description of the adaptation of this method to NFU
appears in the recent paper [4] of Marcel Crabbé, though its first application
appeared in the earlier paper [2] of Boffa.

The idea is to redefine the membership relation using a permutation of the
universe. We will only consider the use of permutations π which are sets in
our ambient NF(U), though the method is applicable to a more general class of
”set-like” permutations which may not be sets, and interesting results can be
obtained using these more general techniques as well. A more general treatment
is found in [5].

Definition 2.1. If π is a set permutation of the universe fixing all urelements
we define x ∈π y as x ∈ π(y). If φ is a formula in the language of NFU, we
define φπ as the formula obtained by replacing all occurrences of ∈ with ∈π (with
concomitant effects on predicates or functions defined in terms of ∈).

Observation 2.1. If φ is stratified, so is φπ. It is easy to see that extensionalityπ

is true; it is only slightly harder to see that (stratified comprehension)π is true,
as {x | φ}π is conveniently defined as π−1({x | φπ}).

Definition 2.2. For any permutation π of the universe, define j(π) as the map
which sends each set A to π“A (and fixes any urelements). Note that j(π)
will also be a permutation, so this process can be iterated. Define a hierarchy
of permutations πn of the universe, in which π0 is the identity and πn+1 =
jn(π) ◦ πn.

Observe that any sentence x ∈ y is equivalent in truth value to the sentence
π(x) ∈ j(π)(y) for any permutation π. Replacing π with jn(π), we find that
x ∈ y ≡ jn(π)(x) ∈ jn+1(π)(y). x ∈ π(y) is equivalent to π0(x) ∈ π1(y) by
the definitions of π0 and π1 and this observation. Now consider πn+1(x) ∈
πn+2(y); this is by definition jn(π)(πn(x)) ∈ jn+1(π)(πn+1(y)), which by our
observation is equivalent to πn(x) ∈ πn+1(y). So, by induction, x ∈π y is
equivalent to πn(x) ∈ πn+1(y) for any n. We make the further observation that
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for any permutation π, (∀x.φ) ≡ (∀x.φ[π(x)/x]), which allows us to eliminate
permutations applied to bound variables. We now have the tools we need to
prove the following

Theorem 2.1. (NF(U)) For any stratified assertion φ in the language of set
theory, φπ is equivalent to φ with each parameter a replaced with πtype(a)(a),
where type is a stratification of φ (in the strict form with domain all variables
and range restricted to the natural numbers).

Proof. Replace each atomic subformula x ∈π y in φπ with the equivalent for-
mula πn(x) ∈ πn+1(y), and each atomic subformula x = y with πn(x) = πn(y),
where n = type(x) in both cases. Notice that n + 1 = type(y) in the first
kind of formula and n = type(y) in the second, so this procedure will cause
each variable or parameter z to appear only in the context πtype(z)(z) (under
the simplifying assumption that φ is presented in a form involving only equal-
ity and membership formulas). The second observation above can be used to
eliminate all permutations applied to bound variables, and the resulting formula
equivalent to φπ is as the theorem requires it to be.

Definition 2.3. A permutation π of the universe which is not necessarily a set
function is called setlike if jn(π) is defined for all n on all sets. It is not difficult
to see that the theorem holds for any setlike permutation π, even if it is not a
set function itself.

Observation 2.2. It is tempting to redefine φπ to stipulate that as well as re-
placing each occurrence of ∈ with ∈π, we also replace each parameter a with
π−1
type(a)(a) (where type is a stratification of φ). Under this definition, we would

simply have φπ ≡ φ for stratified φ. For sentences (formulas without free vari-
ables) we would have φπ ≡ φ under either definition. However, it seems that the
reference of parameters needs to remain fixed when this notation is being used
in practice to discuss permutation models.

Definition 2.4. We see from the above that if 〈V,∈〉 is a model of NF(U) and π
is a permutation in this model, that 〈V,∈π〉 is also a model of NF(U). Following
common abuse of notation for structures, we might refer to the first model as V
and we will on occasion refer to the second as V π.

The theorem reveals a strong restriction on what sorts of consistency and
independence results can be proved in this way: the truth of stratified sentences
of the language of NF(U) cannot be perturbed by these permutation methods.
It might seem that this would greatly limit the mathematical interest of these
methods, but as it turns out there are unstratified assertions with very interest-
ing mathematical consequences in NF(U), as we will see below (some of these
turn out to be invariant as well), and these permutation methods can be used to
study the possibility of using constructions proper to Zermelo-style set theory
which rely on (instances of) unstratified comprehension and so are not obviously
appropriate in the NFU context.
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The first author has suggested that a kind of modal logic of permutation
models has value:

Definition 2.5. For any sentence φ, we define ♦φ as (∃π.φπ) and �φ as
(∀π.φπ). Since the permutations π are sets, the “modal” propositions intro-
duced make sense. It is not to be expected that the modal assertions will be
stratified, and in any event the modal operators are of no interest when φ itself
is stratified.

We refine our notational conventions.

Convention 2.1. We have defined the notations φπ and {x | φ}π for any
formula φ and permutation π above. By extension, for any term T definable
in terms of our set notation we have implicitly defined the notation Tπ. We
will sometimes need to use terms defined in terms of the old interpretation as
parameters in propositions or terms to be understood in terms of the new inter-
pretation. A term Uold appearing as a parameter in a context φπ and {x | φ} is
to be understood in terms of the original interpretation. For example, {Nold}π
is the singleton in terms of the permutation interpretation of the set of natural
numbers of the old interpretation, or π−1({N}), which is not as a rule the same
object as π−1({N π}) = {N}π, the object understood to be the singleton of the
set of natural numbers in the permutation interpretation. The old suffix may
be used from time to time to remind us how symbols are to be understood, even
in contexts where its use is formally unnecessary.

Now we prove some theorems of Scott about Quine atoms (and a theorem
of Henson which rounds out Scott’s results), giving the promised examples of
the method. The proofs are not necessarily the same in detail as those in the
original sources.

We introduce some notation for permutations.

Definition 2.6. The symbol (a b) denotes the permutation which sends a to b,
b to a, and fixes every other object (a transposition). If f and g are one-to-one
maps with the same domain S and disjoint ranges, Πi∈S(f(i) g(i)) denotes the
map which sends each f(i) to g(i), each g(i) to f(i), and fixes each other object.

Theorem 2.2. (Scott) It is consistent with NF (or NFU) that there are Quine
atoms.

Proof. Let π be the permutation (∅ {∅}) which interchanges ∅ with {∅} and
fixes every other object (note that this means that all urelements are fixed, if
there are any).

Under ∈π, the original ∅ has the original ∅ as its own sole member, thus
providing the requisite Quine atom. Note that the original {∅} plays the role
of ∅π. The theorems about permutation methods already stated assure us that
we still have a model of NF(U).

Theorem 2.3. (Scott) It is consistent with NF (or NFU) that there are no
Quine atoms.
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Proof. The feature which made the π of Theorem 2.2 work was that it moved
some object onto its own singleton. For the current theorem, we want a π which
interchanges each singleton with something which cannot be its sole member.
In fact, it suffices to confine our attention to singletons of singletons, because
only these can be Quine atoms. Define π as swapping each {{x}} with {{x}, ∅},
and fixing everything else: we have the notation∏

x∈V
({{x}} {{x}, ∅})

for this. Suppose that for some y, y = {y}π. For this to be true, {y} = π(y) has
to have been true in the original model (and so does y = π({y})). If y was fixed
by π, then y = {y} is the singleton of a singleton, and would be moved to a
non-singleton set by π, which is a contradiction. If y is moved by π, it is either
of the form {{x}, ∅}, in which case {y} would be fixed by π and so could not be
equal to π(y), or it is of the form {{x}}, in which case {y} would be sent by π
to {{{x}}, ∅} 6= y. So it cannot be true in any case, and the new interpretation
has no Quine atoms.

Theorem 2.4. (Pétry, [17]) For any strongly cantorian set A it is consistent
that the Quine atoms make up a set the same size as A.

Proof. This is a two-step proof. The first step is to apply the permutation of
the previous proof which eliminates all Quine atoms. Now work inside this
permutation interpretation. Take a strongly cantorian set B the same size as A
containing no singletons: B = {{{a}, ∅} | a ∈ A} will serve (note that this set is
the same size as ι2“A for general A; it is only because A is cantorian that B is
the same size as A). Take a new permutation π =

∏
x∈B(x {x}), swapping each

member of B with its singleton and fixing everything else. It is straightforward
to verify that each element of B is a Quine atom in V π, and there are no other
Quine atoms.

It is obvious that if the Quine atoms make up a set, it must be a strongly
Cantorian set: the identity map restricted to any set of Quine atoms is a set
and is also the restriction of the singleton map to that set.

Theorem 2.5. (Henson) It is consistent for the Quine atoms to make up a
proper class.

Proof. Using the discussion of properties of ordinal numbers above, we can
define the permutation π needed for the result. First apply the permutation
which kills all Quine atoms. Then apply the permutation

∏
α∈Ord(T (α) {α})

swapping each ordinal T (α) with the singleton {α}. This permutation is a
set because the two occurrences of α in its definition have the same type (we
could not define a set permutation which swapped each ordinal with its own
singleton). This permutation tranforms each ordinal which is a fixed point of
T (i.e., each cantorian ordinal) to a Quine atom, and it is an easy exercise to
verify that no other Quine atoms are created. The Quine atoms of the new
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interpretation make up a proper class because the cantorian ordinals of the old
interpretation make up a proper class: it is easy to prove that the successor of
any cantorian ordinal is cantorian and the supremum of any set of cantorian
ordinals is cantorian, and so if the cantorian ordinals made up a set they would
constitute all of the ordinals, which we have already shown not to be the case (Ω
is not cantorian). (It is interesting to note that every strongly cantorian well-
ordering is similar to the initial segment in the natural order on the ordinals
consisting of all the (strongly cantorian) ordinals less than its order type, so
every strongly cantorian well-ordering is similar to a well-ordering on Quine
atoms in this permutation interpretation.)

3 The von Neumann numerals and the Axiom
of Counting

An axiom commonly adjoined to NF(U) (first proposed by Rosser in [21]) is

Axiom 3.1. (Axiom of Counting) For each natural number n, |{m | m < n}| =
n.

This statement is “obviously true” but in fact it cannot be proved in NF or
NFU . It is known to strengthen both of these theories essentially (in the case
of NF , on the assumption that NF is consistent). It might seem that it could
be proved by mathematical induction, but the condition |{m | m < n}| = n
is unstratified: the two occurrences of n differ in type by 2 if the formula is
interpreted as a formula of TST , and the set of natural numbers is defined as
the intersection of all inductive sets, which only warrants induction on stratified
conditions. Once the model theory of NFU is understood, it is easy to construct
models of NFU + Infinity + the negation of Counting (in fact, it is easier than
constructing a model in which Counting is satisfied), and in [16] Steven Orey
showed that NF + Counting proves the consistency of NF , which is one of the
few nontrivial independence results known for NF .

There is another way to state this axiom which is more instructive and will
introduce concepts important for our later development.

Theorem 3.1. (proof omitted) T is a (possibly external) bijection on the natural
numbers: for any natural number n, T (n) is a natural number and there is a
unique natural number T−1(n). (T is only a set function if it is the identity).

The omitted proof is an easy induction argument.

Theorem 3.2. The assertion “for all n, T (n) = n” is equivalent to the Axiom
of Counting.

Proof. (sketched) |{m | m < n}| = T 2(n) is easily proved by induction (note
that the applications of T bring the types of the occurrences of n into alignment).
Then it is easy to show that T 2(n) = n for all n just in case T (n) = n for all n,
using the fact that T is strictly monotone.
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We set out to prove the following result of the first author:

Claim 3.1. (Forster) It is ”possible” (in the sense of Definition 2.5) for the
set of von Neumann numerals to exist iff the Axiom of Counting holds.

We first need to develop the definition of the class of von Neumann numerals.
We recall the familiar construction of the natural numbers in Zermelo-style

set theory. 0 is defined as ∅. We define the “successor” x+ of an arbitrary set
x as x ∪ {x}. Then we define the set of natural numbers as the intersection
of all inductive sets, as we did above (but with different notions of zero and
successor).

From the standpoint of NFU , this seems quite impossible, since the operation
x+ is unstratified and so cannot appear in any stratified formula. In TST , each
von Neumann numeral n appears first in type n+ 1, and n+ is one type higher
than n.

We can define the class of von Neumann numerals vN as the intersection
of all sets which contain the von Neumann zero and are closed under the von
Neumann successor operation. The definition of this class is unstratified, so
there is no reason to believe that it is a set.

Definition 3.1. For any set x, define x+ (its von Neumann successor) as
x ∪ {x}. We say that a set ν is a von Neumann numeral just in case (∀A.∅ ∈
A ∧ (∀x.x ∈ A → x+ ∈ A) → ν ∈ A). If there is a set whose elements are
exactly the von Neumann numerals, we call it vN .

Theorem 3.3. (Forster) The Axiom of Counting implies ♦(vN is a set).

Proof. The needed permutation π is∏
n∈N

(T (n) {m | m < n})

(note that T (n) and {m | m < n} have the same relative type, one higher than
that of n). Because the Axiom of Counting holds, T (n) = n, so the effect is
to assign to each natural number n of the original interpretation the extension
{m | m < n}. The original 0 is the von Neumann 0 of the new interpretation: the
new extension of 0 is π(0) = {m | m < 0}, which is empty. In symbols, 0 = (∅)π.
For each natural number n, the new extension of n will be {m | m < n} and the
new extension of n+1 will be {m | m < n+1} = {m | m < n}∪{n}: the natural
number n+1 of the original interpretation will be the von Neumann successor in
the new interpretation of the natural number n of the original interpretation. In
symbols we would like to write n+ 1 = (n+)π, but this could be understood as
saying that the old n+1 is the von Neumann successor in the new interpretation
of the new natural number n. To avoid this, we write n + 1 = ((nold)

+)π,
where the convention is that the symbol nold is interpreted in terms of the
old interpretation. From this it is clear that each concrete natural number of
the old interpretation becomes the corresponding von Neumann numeral in the
new interpretation. We claim that the original set N is the set vN in the new
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interpretation: N = (vN)π. This requires some verification. Certainly the
old set N , considered as a set of the new interpretation, is inductive using the
new von Neumann 0 and von Neumann successor (which coincide here with
the old zero and successor). Moreover, any von Neumann inductive set I of
the new interpretation will contain the von Neumann 0 and be closed under
von Neumann successor and so will contain all the natural numbers of the old
interpretation: the intersection of I with the old set of natural numbers will
be a set containing the old 0 and closed under the old successor operation, and
so will contain all old natural numbers. Thus vN , the intersection of all von
Neumann inductive sets containing 0, in the new interpretation is the old N ,
and so is a set.

Though this result was first claimed explicitly by Forster, it appears at first
blush to be an immediate corollary of the more general theorem 2.4 of Henson’s
[8], and the permutation used in the proof is similar. However, this is less
obvious that it appears. Theorem 2.4 deals with general von Neumann ordinals
rather than with von Neumann numerals, and the definition of von Neumann
ordinal which Henson uses is not the same. Henson defines a “von Neumann
well-ordering” as a well-ordering ≤ with the property that for each x in the
range of ≤, x = {y|y < x}, (where < is the corresponding strict well-ordering)
and his theorem asserts that it is consistent with NF (the proof adapts easily
to NFU ) that there is a von Neumann well-ordering of the same length as each
strongly cantorian well-ordering. The union of the domain and range of a von
Neumann well-ordering is the corresponding von Neumann ordinal (if the strict
well-ordering were used, we could not distinguish 0 and 1). The permutation
which arranges this is ∏

α∈Ord
(T (α) {β | β < α}),

which converts each strongly cantorian ordinal to the corresponding von Neu-
mann ordinal. If we assume that ω is strongly cantorian (this is equivalent to
assuming the Axiom of Counting), it follows that ω will become the von Neu-
mann ω, which is clearly the set of all von Neumann numerals (equiv. von
Neumann finite ordinals). Forster defines the collection of von Neumann or-
dinals as the (proper class) intersection of all sets which contain the empty
set, are closed under von Neumann successor, and are closed under union of
their subsets. This definition has the same flavor as Forster’s definition of vN .
The Henson definition could be called an “internal” definition (looking at fea-
tures of each von Neumann ordinal) while the Forster definition could be called
an “external” definition (working from closure properties of the entire class of
von Neumann ordinals). These definitions are equivalent, but it is not easy
to prove this (it is much trickier to prove them equivalent in NF(U) than it
is in Zermelo-style set theory). For other similar notions, such as the Zermelo
numerals, “internal” and “external” definitions apparently do not coincide.

Theorem 3.4. (Forster) The Axiom of Counting holds if vN is a set.
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Proof. (Holmes) We need to show a series of facts about vN (we suppose
throughout the argument that vN is a set).

Each element of vN is finite (the set of finite sets is von Neumann inductive).
Each nonempty von Neumann numeral x is the von Neumann successor of

some von Neumann numeral y 6= x: otherwise vN−{x} would be von Neumann
inductive and x 6∈ vN .

No von Neumann ordinal can be its own successor. x = x+ holds for a set
x iff x ∈ x. For any self-membered set x, the set {y | x 6∈ y} exists by stratified
comprehension and is easily seen to be von Neumann inductive: it follows that
x cannot be a von Neumann numeral.

There is at least one element of vN of each finite size: there is an element
of size 0, and given an element x of size n we see that x+ is of size n+ 1, since
x cannot be self-membered. Note that this induction argument only works
because vN is a set, so the class of cardinalities of elements of vN is a set.

We claim that the class of von Neumann numerals which are unique in their
size is a set (obvious if vN is a set) and is von Neumann inductive. Clearly the
von Neumann 0 is the only von Neumann numeral of size 0. Suppose x is the
only von Neumann numeral of size n. Let y be any von Neumann numeral of
size n+ 1. We know that y is the von Neumann successor of some z 6= y. This
z is of size n and so must be x, so y must equal x+, and thus x+ is the only von
Neumann numeral of its size n+ 1.

Now consider the class A of von Neumann numerals ν such that for some
natural number n the elements of ν are the unique von Neumann numerals of
each size less than n. The definition of A is (weakly) stratifiable, so A is a
set (it is worth noting that vN appears at two different relative types in the
definition of this set, but this is not a problem, as vN is free in the formula
defining A: the defining formula is weakly stratified rather than stratified, but
we have comprehension for weakly stratified formulas as well, as noted above).

The von Neumann 0 is certainly in A. If x is in A, it contains as elements a
set of size 0, a set of size 1, and so on up to a set of size n − 1. The size of x
itself will be T (n) (the elements of x are one type higher than the elements of
the elements of x). So x+ will belong to A exactly if the new element x added
is of size n, so exactly if n = T (n).

Suppose that n is the size of the smallest von Neumann numeral not in A. It
is easy to see that n > 1, so we can see that the von Neumann numerals x and x+

of sizes n−1 and n−2 are in A, from which it follows that T (n−2) = n−2 by the
discussion of the previous paragraph, from which it follows that T (n−1) = n−1
(it is easy to see that T (m+1) = T (m)+1 for all m), from which it follows that
x++ is in A, which contradicts the putative choice of n. It follows that every
von Neumann numeral is in A.

Since every von Neumann numeral is in A, we have T (n) = n for every
natural number n which is the size of a von Neumann numeral. We have already
seen that every natural number is the size of some von Neumann numeral, so
we have T (n) = n for all n, an assertion equivalent to the Axiom of Counting.

This completes the proof. Henson showed that von Neumann ordinals are
strongly Cantorian, so that the existence of the von Neumann ω (which is vN)
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would imply the Axiom of Counting. But, as we have noted above, he was
working from a different definition of von Neumann ordinals and so of von
Neumann numerals and vN .

Theorem 3.5. (Henson) (Axiom of Counting)π is equivalent to the Axiom of
Counting, for any permutation π.

Proof. AxCount is equivalent to the assertion that for all n ∈ N , if A ∈ n then
ι“A ∈ n. We need to show that this is equivalent to (AxCount)π, which means
“for all n ∈ N , if A ∈π nπ, then (ι“A)π ∈π nπ”.

It is straightforward to determine that nπ = π−1(π−1“n); it is somewhat less
straightforward to determine what (ι“A)π denotes. Clearly {a}π = π−1({a}).
We require a ∈π A ≡ {a}π ∈ (ι“A)π, which is equivalent to requiring a ∈
π(A) ≡ π−1({a}) ∈ π((ι“A)π), whence (ι“A)π = π−1(π−1“ι“(π(A))).

Now we see that “if A ∈π nπ, then (ι“A)π ∈π nπ” is equivalent to “if
A ∈ π(π−1(π−1“n)) = π−1“n, then π−1(π−1“ι“(π(A))) ∈ π(π−1(π−1“n)) =
π−1“n, which is in turn equivalent to “if π(A) ∈ n then π−1“ι“(π(A)) ∈ n”,
which is equivalent to the instance of the Axiom of Counting with which we
started: |π(A)| = |A| = |ι“A| = |π−1“ι“(π(A))|, where the middle equation
is the instance of Counting and the outer equations |π(A)| = |A| and |ι“A| =
|π−1“ι“(π(A))| are consequences of the fact that π and its inverse are set maps.

This allows us to complete the proof of Claim 3.1. If the Axiom of Counting
holds, it is “possible” for the set of von Neumann numerals to exist (Theorem
3.3). Conversely, if it is “possible” for the set of von Neumann numerals to exist,
it is “possible” for the Axiom of Counting to hold (since the Axiom of Counting
actually holds if the von Neumann numerals actually exist, by Theorem 3.4).
But, by Theorem 3.5, if it is “possible” for the Axiom of Counting to hold, then
the Axiom of Counting actually does hold.

So the Axiom of Counting is equivalent to the assertion that the set of
von Neumann numerals exists in the permutation interpretation V π for some
permutation π, which is what we set out to prove.

Theorem 3.6. (Forster) The Axiom of Counting is equivalent to the asser-
tion that there is a permutation π such that the universe V π contains inductive
closures of {∅} under F for every class (not necessarily set) map F defined by
F (x) = {z ∈ Pi(x) | φ}, where φ is a parameter-free formula, not necessarily
stratified, which is ∆P0 (i.e., φ is a formula in equality and membership with
every quantifier in φ bounded by a variable or a concrete iterated power set of a
variable, the variable being free in the scope of the quantifier). Note that because
φ is not stratified we will need to show not only the existence of the closure but
the existence of values of F (x).

Proof. One direction of this follows from the result already shown that the
existence of vN (which can be expressed as an inductive closure of the kind
indicated: let F (x) = {y ∈ P(x) | y ∈ x ∨ y = x} and vN is the closure of {∅}
under F ) in any permutation model implies the Axiom of Counting.
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Now assume the Axiom of Counting.
The permutation π which does the trick is the permutation which inter-

changes each natural number n with {m | “the mth binary digit of n is 1”} (the
definition of this permutation is not stratified, but it is a set under the assump-
tion of the Axiom of Counting: it is then equivalent to the permutation which
interchanges each natural number n with {m | “the mth binary digit of T−1(n)
is 1”}, which definition is stratified; it is possible to define “the mth binary digit
of n is 1” in such a way that the two variables have the same type). (We call this
the Ackermann permutation because we believe that Ackermann was the first to
note that the binary expansion can be used to code sets as natural numbers.) In
the resulting permutation interpretation V π, each old natural number becomes
a set of smaller natural numbers, and each finite set of old natural numbers is
coded by an old natural number. In V π, the old N becomes Vω, the class of
hereditarily finite sets, defined here as the (possibly proper class) intersection
of all sets which contain all of their finite subsets (there is more on Vω below):

Definition 3.2. We say that a set A is hereditarily finite iff it belongs to every
set B such that all finite subsets of B are elements of B. If there is a set whose
elements are exactly the hereditarily finite sets, we call this set Vω. (It is worth
noting that we are actually defining the class of well-founded hereditarily finite
sets here, but we have little occasion to consider non-well-founded hereditarily
finite sets in this paper).

We consider the set Nold (the set of natural numbers of the old interpre-
tation) as a set of V π. Each element of Nold is assigned an extension con-
sisting of smaller elements of Nold, by examination of the permutation. Fur-
ther, each finite subset of Nold is the extension assigned to some element of
Nold in V π (again, by direct examination of the permutation). Thus we have
(Nold = Pfin(Nold))

π: in the new interpretation, the set Nold coincides with
the set of finite subsets of Nold.

Let A be any set for which we have (Pfin(A) ⊆ A)π. Let <old be the usual
order relation onNold inherited from the original model. Consider the <old-least
element n of Nold which does not belong to A in V π (if there is one). In V π, n
is a finite collection of <old-smaller elements of Nold, all of which by choice of
n belong to A, which is absurd: this makes n a finite subset of A not belonging
to A, contradicting the choice of A. So every set A for which (A = Pfin(A))π

contains all elements of Nold in the new interpretation V π, from which it follows
that Nold, itself a set which contains all of its finite subsets in V π, is in fact the
intersection of all such sets, or Vω (in the sense of V π). Briefly, N = (Vω)π.

Vω contains all elements and subsets of its elements and all power sets of its
elements. All these sets are finite and so are strongly Cantorian by the Axiom
of Counting, as is the countably infinite set Vω itself. Now observe that every
quantified variable in the definition of F (x) is bounded by an iterated power
set of some variable free in the scope of the quantifier, which is in turn either
x or a quantified variable bounded in an iterated power set of a variable free in
its scope, and so on until we get to x (the only free variable in the definition of
F (x)). Closure properties of Vω show that every variable can be supposed to be

17



bounded in Vω if x is in Vω. From this we can conclude that F (x) exists as a set
for every x ∈ Vω, and that the restriction of F to Vω is a set, because every bound
variable in the definitions of these classes is bounded in a strongly cantorian set,
and so can have the type of each of its occurrences independently adjusted for
stratification purposes. From this it follows that the desired inductive closure
is a subset of Vω. It should be clear that the result extends to closures under
operations with more than one argument or with parameters taken from Vω
allowed in the definition of F .

4 The Zermelo numerals

Here we discuss the status of a different unstratified class of sets which has
also been used to implement the natural numbers in Zermelo-style set theory,
namely the Zermelo numerals ∅, {∅}, {{∅}} . . ..

Definition 4.1. We say that a set x is a Zermelo numeral if x ∈ A for every
set A such that ∅ ∈ A and (∀y.y ∈ A → {y} ∈ A). We refer to the class of
Zermelo numerals as Zn. We say that a set A is Zermelo-inductive if it has ∅
as a member and has {x} as a member whenever it has x as a member.

Lemma 4.1. If Zn is a set, we have |Zn| = 1 + T (|Zn|).

Proof. This holds because Zn is the union of the disjoint sets {∅} and ι“Zn. If
Zn is a set, {∅} ∪ ι“Zn is a set and is “Zermelo-inductive”, so Zn ⊆ ∅ ∪ ι“Zn.
Now suppose that we have z ∈ ({∅} ∪ ι“Zn) − Zn: z is clearly not the empty
set, so it must be {w} for some w ∈ Zn. But it is obvious that w ∈ Zn →
{w} ∈ Zn.

Corollary 4.1. If Zn is a set, it cannot be finite.

Proof. No natural number n can satisfy n = Tn+ 1 because n and Tn have the
same parity.

Lemma 4.2. If Tn < n for some natural number n, it is possible for Zn to be
a proper subclass of a finite set.

Proof. Consider the permutation π which swaps 0 with ∅ and each natural
number Ti+ 1 with {i}. This will clearly convert the concrete natural numbers
into the concrete Zermelo numerals. Suppose that Tn < n for some natural
number n. The set {i ∈ N | i < n}old contains as its elements under the new
interpretation all the natural numbers iold of the old interpretation with i < n.
Since {iold}π = Ti + 1 < Tn + 1 < n (where we are of course alluding to old
natural numbers and their original order) will belong to this set (in the new
sense) if iold does, it follows that this set is Zermelo inductive in V π. But then
the class of Zermelo numerals cannot be a set in V π, because an infinite set
cannot be a subset of a finite set.
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Lemma 4.3. If Tn ≥ n for all natural numbers n then it is possible for Zn to
be a countably infinite set.

Proof. Use the permutation π which exchanges each natural number Tn+1 with
{n} and 0 with the empty set. The application of T is required to ensure that
the map is a set. In the permutation model V π, Nold, whose elements are the
old natural numbers, will be Zermelo inductive, because for any natural number
nold of the original model, {nold}π = Tn+ 1 ∈π Nold. Now suppose that in V π

some proper subset A of Nold is Zermelo inductive. There will be a least natural
number n+1 such that (n+1)old 6∈π A (clearly 0old ∈π A). n+1 = {T−1nold}π,
whence we must have T−1n ≥ n + 1, whence T−1n > n, whence Tn < n,
contrary to assumption. This completes the proof that N = (Zn)π. Clearly
Nold is a countably infinite set in the permutation model.

Observation 4.1. The assertion (∀n ∈ N .n ≤ Tn), which has an obvious
relationship to conditions in the two preceding lemmas, is a weaker form of the
Axiom of Counting (which we will refer to in a later section as AxCount≤).

Lemma 4.4. If Zn is a cantorian set, it contains a countably infinite set (if
we assume further that Tn ≥ n for all n, we show in another way that Zn is
possibly countably infinite).

Proof. If Zn is cantorian, we have a bijection f sending Zn onto ι“Zn. The
inductive closure of the singleton of the empty set under this map will be a
countably infinite subset of Zn, which we may denote as {fn(∅) | n ∈ N}. (We
can define the indexing so that the map sending i to f i(∅) is a function.) This
completes the proof of the main result. For the additional remark, we want to
construct a permutation which will convert the map f into the singleton map.
We would like to exchange f i+1(∅) with {f i(∅)}, but the best we can do is to
exchange fTi+1(∅) with {f i(∅)} (the application of T makes the intended map
stratified). Use ∏

i∈N
(fTi+1(∅) {f i(∅)})

as π. In the resulting model V π, the set {fn(∅) | n ∈ N}old is Zermelo-inductive:
it contains the empty set (which isn’t moved by the permutation) and contains
the singletons in the new sense of each of its elements. Now suppose that there
was a smaller Zermelo-inductive set A in V π. We would have a least i+ 1 such
that (f i+1(∅))old 6∈π A. A must not contain fT

−1(i)(∅), whose singleton in the
new sense is f i+1(∅) itself. From this it follows that T−1i ≥ i + 1, whence
Ti < i, contrary to the additional assumption. This shows that the set of
iterated images of the empty set under f is the class of Zermelo numerals in
V π, so Zn is “possibly countable” (under the additional condition that T moves
no natural number downward).

Observation 4.2. We would be able to get a sharper result here if we could
show that Zn is “at most countable” in the sense that if it is a set and has a
countably infinite subset it would itself be a countably infinite set: it would then
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follow that if Zn is cantorian it must be countably infinite. But we do not know
how to prove this (nor do we see an approach to constructing a model in which
Zn is an uncountable Dedekind-infinite set).

Lemma 4.5. If Zn is a strongly cantorian set then Zn is countably infinite and
the Axiom of Counting holds.

Proof. The singleton map restricted to Zn is then a set, and the inductive
closure of {∅} under this map will be the set of Zermelo numerals: it is a
Zermelo-inductive subset of Zn, and so has to be the whole of Zn.

It would be ideal if we could show that the possible existence of the Zermelo
numerals was actually equivalent to the assertion (∀n ∈ N .Tn ≥ n). Unfortu-
nately, the Zermelo numerals seem to have too little exploitable structure for us
easily to get a result of this kind.

One might expect that if Zn were a set we could prove that it was a countably
infinite set, as is the case for the apparently similar class vN , but this turns out
not to be so. We will explicitly describe the construction of a model of NFU in
which the class of Zermelo numerals is an infinite but Dedekind-finite set. To be
more precise, the class will be a set which has only finite and co-finite subsets;
we call this an “amorphous” set.

We briefly review the easiest construction of models of NFU (due to Boffa
in [3]). Construct a model of bounded Zermelo set theory (or full Zermelo set
theory, or ZFC ) with an external automorphism J which moves a rank Vα of the
cumulative hierarchy. Suppose without loss of generality that J(α) > α. The
domain of the interpreted NFU will be the rank Vα. The membership relation
x ∈NFU y is defined as x ∈ J(y) ∧ J(y) ∈ Vα. Observe that the rank VJ−1(α)+1,
which is externally isomorphic to the power set of the domain of our model (in
the nonstandard model of bounded Zermelo) contains the sets of our purported
model of NFU , and everything else will be urelements. The construction could
also be carried out in versions of any of the above theories with a set of atoms:
in this case the rank V0 would be the set of atoms and the atoms would be
urelements as well as the sets of rank > J(α) + 1, but for a different reason.

The proof that this yields a model of NFU is closely related to the proof
that our permutation methods work. The proof of weak extensionality in the
model is easy. We demonstrate the existence of {x | φ} in the interpreted NFU ,
where φ is a stratified formula and type is a stratification of φ which sends x
to 0. Translate φ into a formula φ∗ in the language of the nonstandard model
of ZFC with the automorphism J . It is not clear that the class {x | φ∗} is
a set, because of the role of J in its definition. We show that it actually is a
set. Replace each subformula y = z of φ∗ with the equivalent Jn(y) = Jn(z),
where n = type(y) = type(z). Replace each subformula y ∈ J(z) of φ∗ with
the equivalent Jn(y) ∈ Jn+1(z), where n = type(y) (note that n+ 1 = type(z)
will also be true). Replace each subformula J(y) ∈ Vα with the equivalent
Jn(y) ∈ Jn−1(Vα), where n = type(y). Observe that each variable y will now
appear only with exactly type(y) applications of J . Now observe that every
bound occurrence of Jtype(y)(y) (with quantifier restricted to Vα) can be replaced
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with an occurrence of y (with quantifier now restricted to Jtype(y)(Vα)) without
affecting the meaning of the formula φ∗. This eliminates all occurrences of J in
φ∗ except in parameters without affecting its meaning, and shows that the set
{x | φ∗} exists in the nonstandard model of Zermelo set theory. J−1{x | φ∗}
will be the set {x | φ} of the interpreted NFU .

It is useful to note that the isomorphism J is closely related to the inverses
of T operations in the induced model of NFU . For example, if A is a set with
size n in the model of NFU , and J(A) is also a set in the model of NFU ,
|J(A)| = T−1(n). Note that this implies that the Axiom of Counting for the
model of NFU is equivalent to the assertion that J fixes all natural numbers.

We describe the construction of a model of NFU in which the set of Zermelo
numerals exists and is not countably infinite. Start with a model Z1 of (enough
of) ZFA (Zermelo-Frankel set theory with atoms) with a countable set of atoms
and with an external automorphism J as above. From this get a model Z2

of (enough of) ZFA in which the set of atoms of Z1 becomes an amorphous
set which can be indexed externally by the natural numbers. This model is
obtained by the Frankel-Mostowski permutation method (a set a of Z1 belongs
to the model Z2 iff there is a finite set of atoms s such that a is fixed by all
permutations of the universe induced by permutations of the set of atoms which
fix all elements of the finite set s); the external indexing of the amorphous set
is derived from a map witnessing the countability of the set of atoms in the
original model. Convert Z2 to a model of NFU as described above using the
automorphism J of Z1 (whose restriction to Z2 is of course an automorphism
of Z2, still with the appropriate properties). We define a setlike permutation
π of the universe of Z1: π exchanges ∅ with the first atom in the indexing and
exchanges the (n+ 1)st atom with the singleton of the nth atom, and otherwise
π satisfies π(a) = π“(a). This is also a setlike permutation of Z2: Z2 is closed
under π because π sends sets with finite support to sets with (different) finite
support (the same is true for any jn(π)). In the model of NFU it interchanges
the (n+1)st atom with the singleton of the J(n)th atom (because of the role of J
in the redefinition of membership). To verify that it is still a setlike permutation
in the model of NFU , we need verify that the model of NFU is closed under π
and that the image of a set of NFU under π (or any jn(π)) is still a set (not an
urelement) in the permutation interpretation: both of these facts follow from
the fact that any infinite rank is closed under π or any jn(π) (in particular,
Vα and VJ−1(α)+1 are so closed). Consider the set A whose members are the
atoms of Z1; it is an amorphous set in Z2 and in the model of NFU . In the
permutation model of NFU induced by π it is a set containing the empty set
and closed under the singleton operator. To ensure that it is the smallest set
with this property requires an additional condition. To see what it is, we develop
an argument that A is the set of Zermelo numerals and see where the gap is.
Suppose that there is some other set B which contains the (new) empty set and
is closed under the (new) singleton operation. We can consider the intersection
of B with A; this will still have the desired closure properties. Consider the
first element of A in the external indexing which does not belong to B. We can
suppose that it is the n+1-st element (it is certainly not the first element, which
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is the new empty set). The n+1-st element is the (new) singleton of the J(n)-th
element. If J(n) ≤ n, or equivalently n ≤ Tn, is true for all natural numbers,
which is true in suitably chosen models of NFU , this is impossible (because an
non-element of the set cannot be the singleton of an element of the set) and A is
seen to be the set of Zermelo numerals. A is not countable, because passage to
the permutation model will not alter the fact that it has only finite and cofinite
subsets (a condition expressible by a stratified formula).

5 Invariant Sentences as Facts aboutWell-Founded
Relation Types

In the usual set theory, a set is uniquely characterized by the relation type of
the restriction of membership to its transitive closure. We define the transitive
closure of x as the intersection of all transitive sets having x as an element
(note that for us x belongs to its own transitive closure). This restriction of
the membership relation will be a well-founded extensional relation with a top
element (in a sense which will be defined formally below) and in ZF any such
relation type is the type of membership restricted to the transitive closure of
some set.

This motivates the following definitions. Most of what follows originates
with Hinnion’s thesis [9]; more recent sources are the second author’s [12] and
Mathias’s [15]. The details of the formalization here follow [12].

Definition 5.1. A relation R is extensional iff any two elements of the range
of R with the same preimage under R are equal.

Definition 5.2. A relation R is well-founded iff for any subset S of the domain
of R, there is an element of S whose preimage contains no element of S (such
an element is said to be a minimal element of S).

Definition 5.3. An object t is a top of a well-founded relation R iff for all
elements x of the domain of R there is a finite sequence x of length n such that
x1 = x, xn = t, and xiRxi+1 for all appropriate indices i.

Definition 5.4. We use “bfext” to abbreviate the awkward phrase “well-founded
extensional relation with top”. (The spelling of this is derived from the French
terminology of [9])

Observation 5.1. An empty well-founded relation has any object as its top; a
nonempty well-founded relation with a top has a uniquely determined top (if it
had two, we would have a cycle in the relation, whose domain would have no
minimal element).

Definition 5.5. A set picture is an isomorphism class of well-founded exten-
sional relations with top (bfexts). Isomorphism of bfexts is defined as usual.
We refer to the elements of a set picture as its “representatives”. When R is a
bfext, we use the notation [R] for the set picture of which it is a representative.
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The collection of all set pictures is a set in NF(U), which we call Z. For any
set picture [R], [Rι] is clearly also a set picture, and we define T ([R]) as [Rι]
(it is easy to prove that T ([R]) does not depend on the choice of the bfext R).
T is an external (proper) endomorphism of Z.

Definition 5.6. If x is an element of the domain of a bfext R, the “component
of x relative to R” is defined as the maximal bfext which is a subset of R and
has x as its top. If t is the top of R and xR t, the component of x with respect to
R is called an immediate component of R. We define a relation E on Z: xE y
iff x has a representative which is an immediate component of a representative
of y.

Observation 5.2. In the usual set theory, the immediate components of the
restriction of membership to the transitive closure of a set x are the restrictions
of the membership relation to the transitive closures of the elements of x: the
relation E (which is a set relation) should be the precise analogue of membership
on the sets of a Zermelo-like set theory pictured by the elements of Z. It is easily
seen that T respects E: T (x)E T (y) ≡ xE y.

Theorem 5.1. E is a well-founded extensional relation (it does not have a top).

The proof is omitted.

Theorem 5.2. The isomorphism type of the component of x ∈ Z relative to E
is T 2(x).

The proof is omitted: this is analogous to the result that the order type of
the initial segment in the ordinals determined by α is T 2(α).

Theorem 5.3. For any subset S of Z, there is an element s of Z such that for
all t ∈ Z, t ∈ S ≡ T (t)E s and (∀t E s.(∃u.T (u) = t)).

Proof. (sketched) Choose a representative Rx of each element x of S. Rx is a
bfext: from this obtain a new bfext R′x by replacing each node r of Rx with
the pair ({r}, Rx). R′x is isomorphic not to Rx but to Rιx. Now all the R′x’s are
disjoint, so we can take the union of all of the R′x’s and add a new top element,
then carry out an “extensional collapse” (needed because the disjoint union will
not be extensional), to obtain a bfext with immediate components belonging to
each T (x) with x ∈ S. The isomorphism type of this bfext will be s.

Observation 5.3. The previous theorems give us extensionality and a com-
prehension principle for the “set theory” with E as membership. Notice that
any formula in E and membership defines a subset of Z (there is no analogue
to a stratification requirement, because E is a set relation), but that we do not
succumb to the paradoxes of naive set theory because we only have full “compre-
hension” for collections of objects T (x) (though there are elements of Z in the
domain of E which are not images under T ). Note that there will be an element
z which represents the entire collection T“Z of elements T (x) ∈ Z. It cannot
be the case that z E z, because E is well-founded. So z 6= T (z), because T (z)E z
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by definition of z. Thus we also have Tn+1(z)E Tn(z) for each concrete n, but
this does not give us ill-foundedness of E because the “descending sequence” in
E is not a set (note that its definition is unstratified). This is analogous to the
“descending sequence” of Tn(Ω)’s in the ordinals.

Observation 5.4. It is possible to define the analogue of the hierarchy Vα of
ranks in the usual set theory in the set theory of E on Z. For any subset S
of Z, define P (S) as the collection of all representatives in Z of subsets of S
(it does not have to be the case that all subsets of S are actually represented by
elements of Z). Define H as the intersection of all sets of subsets of Z which
are closed under P and under unions of their subsets. The elements of H will
be analogous to the ranks Vα in the “set theory” of E on Z. The union of H
will be an element of H, necessarily the largest, and in fact is provably simply
Z. P (Z) = Z does not contain representatives of all subsets of Z. We define
Z0 as the first rank (H is well-ordered by inclusion) for which it is not the case
that Z (and so P (Z0)) contains representatives of all subsets of Z0. Note that
Z0 6= T“Z0; this would be obvious if the latter were not a rank, so suppose
that T“Z0 is a rank (this is actually a theorem): every subset S of T“Z0 is
represented by an element of Z, by applying our “comprehension” theorem to
the set T−1(S) ⊆ Z0. We know that not all subsets of Z0 are represented by
elements of Z, so these two ranks cannot be the same.

Theorem 5.4. Define a complete rank as an element of H all of whose subsets
are represented by elements of Z. The image of a complete rank under T is a
complete rank (and the inverse of the first incomplete rank Z0 under T is also
a complete rank).

The proof is omitted; it is found in the errata sheet for [12] (it was acciden-
tally omitted from the book).

Observation 5.5. There are various ways to interpret fragments of the usual
set theory in the set theory of E on Z; details are found elsewhere. More impor-
tant to us is that there is a way to interpret NFU itself in the set theory of E on
Z: define xεy as T (x)E y ∧ (∀z E y.(∃u.T (u) = z)), and the resulting theory on
Z will satisfy the axioms of NFU. Details are found in [12] (the domain of the
interpretation described there is Z0, but the idea is similar). The proof that this
gives an interpretation of NFU is very similar to the verification of the model
construction for NFU using an external automorphism of a model of set theory
given above.

The above is a review of basic properties of the set Z of set pictures and the
“membership relation” E and external endomorphism T sufficient for the needs
of this paper. A full exposition is found in [12].

The main result of this section is

Theorem 5.5. (NFU + Choice, due to Holmes) Any invariant sentence φ
(i.e., any sentence φ such that (∀π.φ ≡ φπ)) is equivalent in a uniform way
to a sentence about elements of Z in the language with primitive predicates
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E and T : all invariant sentences are assertions about set pictures involving the
“membership relation” and the endomorphism on the collection of all set pictures
induced by the singleton operation.

Proof. The strategy is to construct an interpretation of NFU in Z which will
satisfy the same invariant sentences as the ambient NFU . The theorem follows
because all assertions in the language of NFU in the interpretation of NFU in
Z will translate into sentences involving only the predicate E and the external
function T .

Let W be a well-ordering of the universe with a last element. W is a bfext;
there are T 2(|V |) order types of initial segments of W , so there are at least
T 2(|V |) elements in Z. Let H1 be the first rank in H which is at least as large
as ι2“V . It is demonstrable that H1 is a complete rank. The cardinality of any
complete successor rank is the image of the cardinality of the preceding rank
under the exponential map exp; the cardinality of the first incomplete rank is
the first cardinal of a rank to have no image under exp, and it is a theorem of
Holmes (in [5]) that there are at least n iterated images under exp of T (|V |)
(and so of T 2(|V |)) for each concrete natural number n in NFU + Choice, from
which it follows by well-known facts about cardinal arithmetic with choice that
exp(|H1|) is defined. Note that if H1 is strictly larger than ι2“V then it must be
a successor rank: in this case use H−1 to denote the predecessor of H1. Define
H∗1 as H1 if the cardinality of H1 is T 2(|V |), and otherwise define H∗1 as an
arbitrary subset of H1 which is a superset of H−1 and has cardinality T 2(|V |).
Note that H∗1 is defined in such a way as to be downward closed under E (its
relation to ranks ensures this). It is useful to note that T“H−1 ⊆ T“H∗1 ⊆ T“H1:
the image of a complete rank under T is always a rank, and T“H1 is a rank
lower than H1 by considerations of cardinality (T 3(|V |) < T 2(|V |)) and easily
shown to be lower than H−1 as well, so T“H∗1 ⊆ H∗1 . Choose a bijection F
from H∗1 to ι2“V , with the stipulation that P (T“H∗1 ) (which can also be proved
to be contained in H∗1 ) be mapped precisely onto the double singletons of sets
(the cardinality of T“H∗1 is T 3(|V |), so the cardinality of P (T“H∗1 ) is the image
under exp of T 3(|V |), which is T 2(|P(V )|), the cardinality of the set of double
singletons of sets).

Define an interpretation of NFU onH∗1 as follows. xεy is defined as T (x)E y∧
(∀z.z E y → z ∈ T“H∗1 ). This yields an interpretation of NFU for the same rea-
son that the interpretation described above does so (see the proof in [12]).

Now we demonstrate that the set theory of ε on H∗1 is equivalent to a
permutation interpretation of the ambient NFU . We define a permutation on
the universe which transforms it into the set theory of ε. Each double sin-
gleton {{s}} is mapped by F−1 to an element s2 of P (T“H∗1 ); the sole el-
ements of elements of the images under F of the inverse images under T of
the “elements” (in the E sense) of s2 are the elements of the set s3 = π(s):

s3 =
⋃2

(F“(T−1“{x | xE F−1({{s}})})) It is straightforward to verify that
the function π thus defined is actually a set bijection, and that xεy is equivalent
to

⋃2
F (x) ∈ π(

⋃2
F (y)), which establishes that the theory of the ambient NFU

is the same as the theory of ε.
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The only apparent obstruction to translation of sentences in the language of
ε into the language of E and T is the status of the special set H∗1 . The particular
choice of H∗1 has no effect on the truth values of invariant sentences (if we used
an alternative H∗

′

1 , the fact that there is a bijection between H∗1 and H∗
′

1 can
be exploited to get a permutation model of the structure built using H∗

′

1 which
has the same theory as the structure built using H∗1 , which establishes that they
agree about invariant assertions), so references to a specific H∗1 can be replaced
by universal quantification over all subsets of Z satisfying a certain condition.
Further, we note that there is an element h of Z which represents T“H∗1 , so
formulas x ∈ H∗1 can be replaced by formulas T (x)E h, eliminating reference to
subsets of Z. This technique for eliminating reference to subsets of Z can be
adapted to define ranks in the language of T and E, and the cardinality of the
universe can be defined as the largest possible cardinality of an “extension” (the
set theory of E has an adequate internal treatment of cardinality): thus, we can
translate the required conditions on the set H∗1 into conditions on an h ∈ Z
expressible in the language of E and T . Everything else in the interpretation of
any sentence φ in the language of ε translates straightforwardly into the language
of E and T . Each φ which is invariant will be demonstrably equivalent to the
translation of φ first to ε then into terms of E and T . So the assertions invariant
under set permutations are uniformly translatable into assertions about the “set
theory with external endomorphism” on the isomorphism types of set pictures.

It should be noted further that all assertions in the language of E and T on
Z are invariant (E has a stratified definition, so assertions about it are clearly
invariant, while invariance of T holds for reasons analogous to those for the
invariance of the T operation on natural numbers demonstrated above), so we
have in some sense precisely characterized the invariant assertions. Moreover,
it seems that the truth values of non-invariant sentences φ have preferred truth
values, namely the truth values they have when translated into the language
of ε. It could be of interest to extend the modal logic proposed by the first
author to include an “actuality” operator ◦φ defined as the truth value of the
translation of φ into the interpretation in ε, since we seem to have a preferred
“possible world”.

The proof is complete. The argument depends in several places on the
availability of the Axiom of Choice, so this does not apply to NF .

6 Vω and AxCount≤

A weaker variant of the Axiom of Counting is

Axiom 6.1. (AxCount≤) For all natural numbers n, n ≤ T (n).

Observation 6.1. AxCount≤ is equivalent to the assertion that |{1, . . . , n}| ≥ n
for all natural numbers n.

Adjoining AxCount≤ to bare NFU allows the proof of Infinity (because
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T (|V |) < |V | are natural numbers in the absence of infinity). In fact, like
AxCount, AxCount≤ strengthens even NFU + Infinity essentially.

We repeat the definition of Vω.

Definition 6.1. Vω is defined as the intersection of all sets which contain all
of their finite subsets. Note that Vω is not obviously a set, as its definition is
unstratified.

Theorem 6.1. AxCount≤ implies ♦( Vω is a set).

Proof. Consider the class of all set pictures (isomorphism classes of well-founded
extensional relations with top) whose representatives have finite domain and
range: we briefly call these “finite set pictures” (they are actually pictures of
hereditarily finite sets). The T operation on set pictures preserves finiteness,
and the finite set pictures inherit the “membership relation” E. The permuta-
tion π we use will interchange each finite set picture s with {T−1t|t E s}, the
elementwise image under T−1 of the set of preimages of the set picture under the
“membership” relation E. The use of T−1 is required to make the permutation
a set. (The Ackermann permutation on natural numbers defined in the proof of
Theorem 3.6 can also be used to prove this result).

It should be clear that each concrete element of Vω will be represented in V π

by the isomorphism class of the membership relation on its transitive closure.
We claim that the set of all finite set pictures of the original interpretation will
be the set Vω in the permutation interpretation.

The set of finite set pictures of the old interpretation contains all of its finite
subsets in the sense of V π. To show this, it is necessary to observe that the
T operation is onto the set of finite set pictures: thus each finite set of finite
set pictures is the elementwise image under T−1 of the preimage under E of
some finite set picture, and so the extension under the new interpretation of
that old finite set picture. So we can restrict our attention to collections of old
finite set pictures which contain all of their own finite subsets as elements in
the permutation interpretation. Our goal is to show that any such collection
contains all old finite set pictures as elements in the sense of V π.

Suppose that such a set A did not contain all old finite set pictures as
elements in V π. Then there would be an old set picture s of minimal rank
which did not belong to A in the new interpretation. The elements of s in
V π would be the images under T−1 of the “elements” of s in the sense of the
“membership relation” E in the original interpretation. The operation T−1 can
only lower rank (by AxCount≤), so the finitely many images under T−1 of the
“elements” of the supposedly missing set picture s are all elements of A (in the
V π) by minimality of the rank of s, so the supposedly missing set picture s is a
finite subset of A in V π, and so an element of A in V π, a contradiction.

It is not known whether the converse of this theorem is true (whether the
possible existence of Vω implies AxCount≤). The first author has shown the
precise equivalence of AxCount≤ with the existence of a related set.

27



Definition 6.2. The finite rank function (n 7→ Vn) is defined as the intersec-
tion of all ordered pairs which contain 〈0, ∅〉 and are closed under the operation
〈n,A〉 7→ 〈n+ 1,P(A)〉. Note that the finite rank function is not necessarily a
set, since its definition is not stratified.

Observation 6.2. AxCount≤ implies ♦(the finite rank function is a set). This
is easy: in the permutation interpretation defined in the last proof, consider the
obvious function from natural numbers to “pictures” of corresponding ranks.

Observation 6.3. If the finite rank function is a set, then Vω is a set. This is
also easy: the union of the range of the finite rank function obviously contains
all of its finite subsets (each element of any finite subset belongs to some Vn: the
whole finite subset will belong to Vm+1 where m is the largest index associated
with any of its elements). A subset of the union of the range of the finite rank
function which contains all of its finite subsets can be shown to contain all of the
Vn’s by induction and so all of their subsets, and so must be the entire union.

Lemma 6.1. The existence of the finite rank function implies AxCount≤.

Proof. Suppose that T (n) < n for some natural number n. It follows that for
any set A of size n, the power set of A is of size 2T (n) < n. It follows that in the
permutation interpretation using finite set pictures, the set of finite set pictures
of rank ≤ n in the old sense is closed under the power set operation. This would
imply further that the finite rank function would be contained in this finite set,
which is not possible if the finite rank function is a set.

Theorem 6.2. AxCount≤ is equivalent to ♦(the finite rank function is a set).

Proof. We have already seen the forward implication. The converse implication
follows from the immediately previous Lemma combined with the observation
already made that the T operation, and so the truth of AxCount≤, is preserved
in all permutation interpretations. Thus ♦(the finite rank function is a set)
implies ♦(AxCount≤) which implies AxCount≤.

Theorem 6.3. (Forster) AxCount≤ is equivalent to the assertion that there
is a permutation π such that the permutation interpretation using π contains
inductive closures of {∅} under F for all class (not necessarily set!) functions F
with definitions F (x) = {z ∈ Pi(x) | φ}, where φ is parameter-free and belongs
to the class ∆P0 (formulas with all quantifiers bounded to sets, but allowing the
power-set operation as a function symbol) and which have y = F (x) a stratified
formula (notice that this does not imply that F is a set function unless the
relative types of x and y are the same).

Proof. One direction is handled by the result already established that the exis-
tence of the finite rank function implies AxCount≤, since the finite rank function
is the inductive closure of {∅} under the stratified but inhomogeneous power set
function.
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In the other direction, we once again consider the Ackermann permutation,
which under AxCount≤ converts the old set of natural numbers into Vω (we
have shown above that it converts N to Vω under the stronger assumption
AxCount). It must be noted that it is not n but T (n) that is swapped with
{m | “the mth binary digit of n is 1”}, due to stratification requirements (this
wasn’t an issue in the earlier proof since the Axiom of Counting was assumed).
Since T (n) ≥ n, the essential condition that each old natural number becomes
a collection of smaller old natural numbers and every finite set of old natural
numbers is coded by a larger old natural number is preserved: this is sufficient
to see that old N becomes Vω.

The function F can be converted to a set function F ∗: F ◦ Tn = F ∗ for
some (possibly negative) integer n (n is chosen so that x and y will have the
same type in y = F (Tn(x))). Observe in addition that F ∗ will commute with
T (F ∗(T (x)) = T (F ∗(x)), because F ∗ is definable in a nice sense and T is an
automorphism of the natural numbers). Further, Vω is closed under F and under
F ∗ because F is defined by a ∆P0 formula and Vω is transitive and contains all
power sets of its elements. We claim that the inductive closure of {∅} under
F ∗, which exists because F ∗ is a set function, is the desired set. Note first that
because F ∗ commutes with T , the inductive closure we have defined will be
closed under F as well as under F ∗. What remains to be proved is that this
set is the smallest set containing ∅ and closed under F . There is a map G such
that G(0) = ∅ and G(n + 1) = F ∗(G(n)) for all n ∈ N . The domain of G is
the natural numbers and the range is the inductive closure of {∅} under F ∗.
Now suppose that some set containing ∅ and closed under F is not a superset
of this inductive closure. Then there will be a minimal i such that G(i) does
not belong to this set. Now F (G(i− 1)), by hypothesis, does belong to the set:
this is F ∗(G(T−n(i− 1))) = G(T−n(i)). Observe that this implies immediately
that i 6= T (i). Further, F−1(G(i)) = G(Tn(i− 1)) cannot belong to the set, so
we have Tn(i− 1) > i, so n > 0. But now we see that F (G(i)) = G(T−n(i+ 1))
is in the set after all, because T−n(i + 1) must be less than i. This argument
can be adapted to closures under functions with more than one argument and
to functions whose definitions include parameters taken from Vω.

This completes the proof.

We now establish that AxCount implies that the existence of the set of all
hereditarily countable sets is “possible” (holds in some permutation interpreta-
tion). We do not know whether AxCount≤ is sufficient.

In [13], Jech showed (in ZF ) that the rank of any hereditarily countable set
is less than ω2. We transfer this result into the realm of set pictures. Note that
choice is not needed, so this result works in NF as well.

Definition 6.3. For any set picture x, define ρ(x) as the least upper bound in
the ordinals of the set {ρ(y) + 1 | y E x}. This definition works because E is
well-founded.

Definition 6.4. Define Hℵ1 , the set of hereditarily countable set pictures, as the
set of set pictures [R] such that no element of the range of R has an uncountable
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preimage.

Theorem 6.4. (Jech ([13], translated into terms of set pictures) The rank of
each hereditarily countable set picture is below ω2.

Proof. We want to show that all set pictures in Hℵ1 are of rank < ω2

Let Ω be the set of all nonempty finite sequences of countable ordinals. A
finite sequence is represented here as a function s whose domain is a proper
initial segment of N : sn is notation for s(n). For any sequence s, we define
slast as sn, where n is the largest element of the domain of s, and we define s−

as s− {〈n, sn〉}, the result of dropping the last element of the sequence s.
We define a function F . The domain of F is Hℵ1 ×Ω. For a fixed S ∈ Hℵ1 ,

we will use the notation FS(s) = F (S, s).
We define F (S, s), when s is a sequence of length 1 with s0 = α, as the

T (α)th element of the elementwise image under ρ of the preimage of S under E,
if this exists, and 0 otherwise (the αth element of a set of ordinals A is defined
as the element β of A such that the natural order on the elements of A less
than β has order type T 2(α) (note that this is the order type of the ordinals
less than α)). The use of T (α) ensures that the relative type of F (S, s) is the
same as that of its arguments S and s. Because the preimage of S is countable,
and because the T operation maps countable ordinals onto countable ordinals
(though it may move some of them if AxCount does not hold) it follows that
FS maps the set of sequences of length 1 onto the set of ranks of preimages of
S under E.

When s has length greater than 1, we define F (S, s) as the T (slast)-th ele-
ment of the elementwise image under (λx.F (x, s−)) of the preimage of S under
E. Thus, for example, the image under FS of the set of sequences of countable
ordinals of length 2 maps onto the set of ranks of elements of the preimage of S
under E ◦E. It is straightforward to prove by induction that FS maps the set of
sequences of length n onto the preimage of S under the relation En (this might

be ET
i(n) for some fixed i depending on the details of the definition of En (the

issue is what type is assigned to the superscript); an advantage of AxCount is
that such details can be ignored).

The function FS defined above maps Ω onto the elementwise image under
ρ of the set of all iterated preimages of elements of S under E (the “transitive
closure” of S in E). The range of FS will be the set of all ordinals less than the
rank of S: but the domain of F (S) is the image of Ω, which has cardinality ℵ1,
so the rank of S is less than ω2.

The translated Jech result shows that the rank of any element of Hℵ1 is less
than ω2, and that the cardinality of any representative of a set picture in Hℵ1
is less than iω2 (admittedly not a very tight bound on cardinality!).

We define a permutation on Hℵ1 which will convert it into the class HC of
hereditarily countable sets, defined as the intersection of all sets which contain
all their countable subsets. The desired permutation π interchanges each T (S)
for S ∈ Hℵ1 with {x | xE S}. It is important to note that the action of T
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on Hℵ1 is bijective. Thus each element of the old Hℵ1 becomes a countable
set of elements of the old Hℵ1 , and each countable subset of the old Hℵ1 is
the new extension of some element of the old Hℵ1 . The old Hℵ1 is thus a
set which coincides with the collection of all its countable subsets in the new
interpretation V π. Further, it is the intersection of all such sets. Let A be a set
which contains all of its countable subsets in V π. Suppose that S is an element
of minimal rank in the old Hℵ1 which is not an element of A. Let α be the
rank of S. The elements of S, a countable set of the new interpretation, will be
the elements of the preimage under E of T−1(S) which all have ranks less than
the rank of T−1(S). Here is where we use AxCount. It is a theorem that the
successor of any strongly cantorian cardinal is strongly cantorian, and of course
order types of well-orderings of strongly cantorian sets are strongly cantorian.
It follows from this that ω2 is a strongly cantorian ordinal (and so are all smaller
ordinals). This means that the rank of T−1(S) is the same as the rank of S
(since it is an ordinal less than ω2). This implies that all elements in the new
sense of S belong to A, and so it is impossible that S 6∈ A, which completes the
proof. We would like to be able to assert that this works for AxCount≤ as well,
but it does not seem easy to prove that the image of a countable ordinal (such
as the rank of S) under T is necessarily less than that ordinal under AxCount≤.

Question 6.1. Does AxCount≤, the assertion that for all natural numbers n,
n ≤ T (n), imply the assertion that for all countable ordinals α, α ≤ T (α)?

This is not an esoteric NF question: it is a question about automorphisms
of nonstandard models of the countable ordinals.

7 Eliminating the set of von Neumann numerals

A question left open by the first author in his discussion in [5] of the relationship
between the Axiom of Counting and the existence of the set of von Neumann
numerals was the question as to whether it is possible to eliminate the set of
von Neumann numerals if it actually does exist.

The second author has answered this question: in this section we describe a
permutation χ such that ¬(vN exists)χ.

It seems to be a good idea to start by describing the motivation behind the
construction of this permutation. The idea is define χ in such a way as to cause
the von Neumann numerals to be interpreted in V χ by a descending sequence of
ordinals of the original model, which of course cannot be a set. This means that
each von Neumann numeral of V χ will be an ordinal, and the permutation will
send ordinals to sets of ordinals (and presumably economically swap appropriate
sets of ordinals back to ordinals).

The von Neumann ordinal 0χ will be the largest of the ordinals Ωi considered,
and clearly a nonstandard one. It will be sent by χ to the empty set. The von
Neumann numeral 1χ = Ω1 will be the second largest of the ordinals considered,
and will be sent by χ to {Ω0}. The von Neumann ordinal 2χ will be sent to
{Ω0,Ω1}, and so forth.
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What the second author noticed about this was that finite sets needed to be
preceded by “downward extensions” of the same finite sets in the order on finite
sets of ordinals induced by the map χ. This caused him to consider a particular
order on finite sets of ordinals.

The order ≺ on finite sets of ordinals which we consider is as follows: {0} is
the least element in the order. When all sets whose maximum element is less
than α have been ordered, we extend the order to sets with maximum element
α as follows: {α} is largest; all sets containing α are larger than all sets not
containing α; where A and B have maximum less than α (and so the order
between them has already been defined) A ≺ B ≡ A ∪ {α} ≺ B ∪ {α}. If
the order on the sets with maximum element less than α was a well-ordering,
we see that the order on sets with maximum less than or equal to α is also
a well-ordering, because it is made of two isomorphic copies of the previously
given order plus an additional element at the top. By transfinite induction, this
process defines a well-ordering on all nonempty finite sets of ordinals; we extend
it to ∅ by stipulating A ≺ ∅ for all nonempty finite sets of ordinals A.

This is a modification of colex order on finite sets of ordinals, making the
empty set last and putting “tails” of nonempty sets after those sets rather than
before them.

There is a unique injective map F from an initial segment of the ordinals
onto the finite sets of ordinals such that α < β → F (α) ≺ F (β) for all ordinals
α, β. To see that this is true, we point out that it is straightforward to show
by induction that if the cardinality of the set of ordinals up to α is κ, the
cardinality of the set of finite sets of ordinals with maximum ordinal α is T (κ).
Since T (κ) < κ for the largest such cardinals, we will not run out of ordinals.

The permutation χ will send each ordinal α in the domain of F to F (α),
each finite set of ordinals A to F−1(A), and fix all other objects.

Let Ω0 be the ordinal corresponding to the empty set (the last set in the order
on finite sets of ordinals). Clearly this will be the empty set of the permutation
interpretation.

Some Ω1 corresponds to {Ω0}; this will be the von Neumann numeral 1 of
the permutation interpretation, and clearly Ω1 < Ω0. For each concrete natural
number n, suppose that the von Neumann numerals for m < n are coded by
a decreasing sequence of ordinals Ωm, each corresponding in the coding to the
set {Ωp | p < m}. The von Neumann numeral n + 1 will then be coded by
the ordinal Ωn+1 corresponding to the set {Ωm | m ≤ n}, and since this is a
downward extension of the finite set of ordinals χ(Ωn), we have Ωn+1 < Ωn.
By induction, the concrete von Neumann numerals correspond to a decreasing
sequence in the ordinals, and so cannot make up a set.

However, we have not yet shown that vN is not a set, because the concept
of “concrete von Neumann numeral” is not really captured by vN . We give the
proof.

Theorem 7.1. vN is not a set in Vχ.

Proof. Suppose otherwise for the sake of a contradiction. Observe first that the
set of old ordinals α which are moved by χ is clearly von Neumann inductive
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in V χ: we have already seen that the empty set of Vχ is an old ordinal, and if
α is an old ordinal, α+ in the sense of Vχ will be χ(χ(α) ∪ {α}) in the sense
of the old interpretation, which is also an old ordinal. Thus the set vN in Vχ,
if there is one, is a set of old ordinals. It must contain a minimal old ordinal
element α, coding a finite set A = χ(α) of old ordinals. Clearly α does not code
the empty set (we have seen above that the old ordinal coding {∅} is smaller
than the old ordinal coding ∅), so α = β+ in V χ for some β ∈ vN . We know
that β 6= α, because no von Neumann ordinal is self-membered (we showed
this earlier in this paper). It follows that β > α as an old ordinal. We have
A = χ(α) = χ(β)∪ {β}. Since β > α, we must have χ(α) = χ(β)∪ {β} ≺ χ(β),
from which it follows that β must be less than any element of χ(β) (otherwise
the definition of ≺ would force the other order). Now consider α+ (in the sense
of V χ: χ(α)∪{α} in the original model): we see that α is less (as an old ordinal)
than β or any element of χ(β), so α+ is a downward extension of A, from which
it follows that χ(α+) < α, which is a contradiction. Thus vN cannot be a
set.

We can show yet more.

Theorem 7.2. The class of Zermelo naturals is not a set in Vχ.

Proof. First note that no self-singleton q = {q} can be a Zermelo natural,
because the set of all sets which do not contain q as an element contains ∅
and is closed under the singleton operation. Now suppose that Z is a set in Vχ.
It is a set of old ordinals, because the empty set of Vχ is an old ordinal and the
singleton in the sense of Vχ of an old ordinal α is χ({α}), which is also an old
ordinal. There is a smallest old ordinal in Z: call it α. α is clearly not ∅, so
α = {β} for some β ∈ Z. Further, β is an old ordinal itself. β cannot be equal
to α because a Zermelo natural cannot be a self-singleton, so we have α < β as
ordinals in the old interpretation. Now the set {α} in the sense of Vχ is also
an old ordinal δ and a Zermelo natural in the new interpretation, and because
α < β we have {α} ≺ {β}, or χ(δ) ≺ χ(α), whence δ < α, contrary to the
choice of α.

Theorem 7.3. Vω is not a set in Vχ.

Proof. Suppose otherwise. Every finite set of old ordinals in the sense of Vχ is
an old ordinal, so the set of old ordinals contains all its finite subsets as elements
and so includes Vω as a subset (all in the sense of Vχ). Thus there is a minimal
old ordinal α (in the order on ordinals of the old interpretation) which belongs
to Vω in the new interpretation. Now the set {α} of the new interpretation is
also an element of Vω and so is an old ordinal β which must be greater than α
by minimality of α. Thus we have (in the original interpretation) χ(α) ≺ {α},
from which it follows that the supremum of χ(α) must be ≤ α (and so exactly
α, by minimality of α and transitivity of Vω). But then χ(α) needs to be a
proper downward extension of {α}, which contradicts minimality of α.

We define the notion “well-founded set” in a way appropriate to the context
of NF(U), and formulate a conjecture.
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Definition 7.1. A set is said to be well-founded iff it belongs to every set A
such that P(A) ⊆ A. This definition supports induction on membership for
stratified conditions.

It is a question originally asked by Maurice Boffa whether there is a permu-
tation that eliminates infinite well-founded sets. We conjecture that there are
no infinite well-founded sets in the permutation model Vχ introduced here, but
we do not yet see how to establish this. A first step toward proving this would
be to show that there are no infinite subsets of the class Vω in Vχ, which would
fairly immediately imply that there are no infinite well-founded transitive sets
in Vχ, but we do not yet know how to show this either. So, we close with these
conjectures:

Conjecture 7.1. In the permutation model Vχ, there is no infinite set which
is a subset of the (proper) class Vω.

Conjecture 7.2. In the permutation model Vχ, there is no infinite well-founded
set.
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[9] Hinnion, R. Sur la théorie des ensembles de Quine. Ph.D. thesis, ULB
Brussels, 1975.

[10] Holmes, M. R., “Strong axioms of infinity in NFU ”, Journal of Symbolic
Logic, vol. 66, no. 1 (March 2001), pp. 87-116. (“Errata in ‘Strong Axioms
of Infinity in NFU ’ ”, JSL, vol. 66, no. 4 (December 2001), p. 1974, reports
some errata and provides corrections).

34



[11] Holmes, M. R., “Forcing in NFU and NF”, in M. Crabbé, C. Michaux and
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