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Abstract 

Holmes, M.R., Systems of combinatory logic related to predicative and ‘mildly impredicative’ 

fragments of Quine’s ‘New Foundations’, Annals of Pure and Applied Logic 59 (1993) 

45-53. 

This paper extends the results of an earlier paper by the author (this journal, 1991). New 

subsystems of the combinatory logic TRC shown in that paper to be equivalent to NF are 

introduced; these systems are analogous to subsystems of NF with predicativity restrictions on 

set comprehension introduced and shown to be consistent by Crabbi. For one of these systems, 

an exact equivalence in consistency strength and expressive power with the analogous 

subsystem of NF is established. 

1. Introduction 

In [2], we introduced a system TRC of illative combinatory logic precisely 

equivalent in consistency strength and expressive power to Quine’s set theory 

‘New Foundations’ [5] ( usually called NF). It remains an open question whether 

NF is consistent (relative to the usual set theory). We also exhibited a system of 

combinatory logic TRCU, a weakening of TRC, which is precisely equivalent in 

consistency strength and expressive power to Jensen’s NFU (‘New Foundations 

with ‘ur-elements’) with the addition of the Axiom of Infinity. Jensen [4] showed 

that this theory is consistent relative to the usual set theory. 

Marcel Crabbe [l] introduced fragments NFP (predicative NF) and NFI (which 

we call ‘mildly impredicative’ NF) of NF, and showed them to be consistent and 
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of quite low consistency strength. We will present a fragment TRCI of TRC 

which is precisely equivalent in consistency strength and expressive power to NFI; 

we also present a weaker fragment TRCP of TRC which is related to NFP but for 

which we have not been able to establish an equivalence with NFP. The fragment 

TRCP related to NFP commands interest because it is ‘natural’ in character, 

whether an exact equivalence can be established or not. 

We review the definition of NF, and give the definitions of the fragments NFU, 

NFP and NFI . NF is the first-order theory with equality and membership whose 

nonlogical axioms are extensionality (sets with the same elements are equal), and 

those instances of the axiom scheme of comprehension (for each condition @ in 

the language of NF and variable x, ‘{x 1 @} exists’) in which the condition # is 

‘stratified’. A formula in the language of NF is said to be ‘stratified’ if each 

variable occurring in the formula can be assigned a nonnegative integer type in 

such a way as to obtain a formula of the simple theory of types. 

NFU is obtained from NF by weakening extensionality so that if two objects 

have the same elements, either they are equal or both have no elements. This 

amounts to the introduction of atoms or ur-elements. NFP and NFI have full 

extensionality, but weaker schemes of comprehension. The formula meaning 

‘{x 1 c$} exists’ belongs to the comprehension scheme of NFI if it is stratified and 

satisfies the further restriction that the assignment of types can be made in such 

way that types more than one greater than the type of x (i.e., greater than the 

intended type of {x 1 $} itself) do not occur. We refer to the condition 4 as being 

‘mildly impredicative’ (relative to x). It belongs to the comprehension scheme of 

NFP if it satisfies the further restriction that no bound variable in $ can have type 

greater than the type of x; all variables of the exact type of {x 1 @} are 

parameters. We refer to such a condition @ as ‘predicative’ (relative to x). 

Con(NFU) is a theorem of Peano arithmetic; NFU + Infinity has the exact 

consistency strength of the simple theory of types with the Axiom of Infinity (see 

[4]). CrabbC [l] showed that NFI interprets second-order arithmetic, while 

Con(NF1) is a theorem of third-order arithmetic, and that NFP interprets 

Robinson’s arithmetic, while Con(NFP) is a theorem of Peano’s arithmetic. In 

[3], we have shown how to construct a model of NFI within which it is possible to 

interpret nth-order arithmetic for every 12. NF is known to be at least as strong as 

the simple theory of types with the Axiom of Infinity; the proof of the Axiom of 

Infinity in NF was first achieved by Specker, who showed in [7] that the Axiom of 

Choice is false in NF-since the universe is a set in NF, and cannot be 

well-ordered (by -AC), it cannot be finite. No one has succeeded thus far in 

constructing a model of NF in a more familiar set theory or in deriving a 

contradiction from NF. The Axiom of Choice is consistent with NFP, NFI and 

NFU + Infinity. 

These set theories have the strange features that ‘very large’ collections, such as 

the universe, are sets. The natural numbers can be defined, using Frege’s original 

definition, in such a way that the natural number II is the set of all sets with n 
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elements (for concrete n). The set of natural numbers N can then be defined (in 
NF, NFI, NFU) as the set of all objects which belong to each set which contains 0 
and is closed under the ‘successor’ operation. In NFP this definition fails, as it 
involves a reference to all inductive sets, and the inductive sets would be assigned 
the same type as the set being defined. For a fuller treatment of set-theoretical 
constructions in NF, see [2]; [6] is a full-scale development of mathematical logic 
in an extension of NF (which can be adapted to NFU + Infinity, so avoiding the 
consistency problem). 

NFP or NFI is strengthened to full NF by the addition of the Axiom of Union. 
Consider the set of all n-fold iterated singletons of objects satisfying a condition 
$; if it is taken to be large enough, the type of the set being constructed will 
exceed any type used in $. Now n iterated unions will give the set of objects 
satisfying @. NFP is strengthened to NFI by the addition of the axiom scheme 
consisting of all assertions ‘the union of {x 1 $} exists’, where ‘{x 1 r$} exists’ is an 
axiom of NFP containing no parameters of the same type as {x 1 +}. Certainly, if 
‘{x ) 4) exists’ is an axiom of NFI, the assertion ‘{{x} 1 C#J} exists’ can be 
expressed by an axiom of NFP with no parameters of the highest type, and the 
union of {{x} I @} would be {x I $I} if it existed, so the extension of NFP implies 
NFI. It is easy to establish that all the axioms added to NFP are actually axioms 
of NFI. Specker’s proof of the Axiom of Infinity can be used to prove the Axiom 
of Infinity in NFP (and thus in NFI); if the Axiom of Union is false, Infinity 
certainly holds (finite sets have unions); if the Axiom of Union is true, we are in 
NF, and Specker’s proof goes through. 

2. TRCP introduced 

We describe the system of combinatory logic TRCP which we will show to be 
related to NFP . TRCP is a first-order theory with equality. Atomic terms of 
TRCP are Eq, Comp, JC,, n2 and variables. If f and g are terms of TRCP, f(g), 

(f, g), and WI are terms of TRCP. These term constructions signify function 
application, pairing and the construction of constant functions, respectively. We 
will always write f(g, h) instead of f((g, h)). We define Id as (ads, ads). We will 
write K”[f] to represent the result of 12 iterated applications of the K-constructor 
to J The nonlogical axioms of TRCP are as follows: 

(Const): WI(g) =f; 
(Proj): X;(fi, f2) =J (for i = 1, 2); 

(Surj): (nl(f), 4f)) =f; 

(Prod): (f, g)(h) = (f(h), g(h)); 
(Camp): Comp(f, g)(h) =f(g(h)); 
(Eq): Eq(f, g) = if f = g then n, else x2; 
(Ext): if f(x) = g(x) for all X, then f = g; 
(Nontriv): .7d, # JQ. 
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The theory TRC shown in [2] to be equivalent to NF has an atom Abst in place 

of Comp (Comp can be defined in TRC) with the more complicated axiom 

(Abst): Abst(f)(g)(h) =f(K[h])(g(h)). Note that the proposition (Id): Id(x) =x 

follows from (Proj) and (Surj). The theory TRCI is described below. 

We define a notion of ‘relative type’ for subterms of a term of TRCP. The type 

of a term relative to itself is 0. If the relative type of a subterm (f, g) is n, the 

relative types of the obvious instance off and g are also n. If the relative type of a 

subterm f(g) is n, the relative type of the obvious instance off is n + 1 and the 

relative type of the obvious instance of g is IZ. If the relative type of an instance of 

K[f] is n, the relative type of the obvious instance of f is IZ - 1. We use this 

notion of relative type in the statement of the following theorem. 

Abstraction Theorem for TRCP. Let T be a term in the language of TRCP and let 
x be a variable which does not occur in T as a subterm of any subterm K[S] or with 
any relative type other than 0. It follows that there is a term (Ax)(T) in which the 
variable x does not occur such that ‘(k)(T)(x) = T’ is a theorem of TRCP. For 
any variable y which occurs with type rz in T and is not x, y occurs with type n - 1 

in (Ax)(T). 

Proof. Use induction on the structure of T. (Ax)(x) = Id. (Ax)(A) = K[A], where 

A does not contain X. (hu)(U, V) = ((k)(U), (Ax)(V)) (by (Prod) and inductive 

hypothesis). (k~x)(L.l(V)) = Comp(U, (Ax)(V)), since x cannot occur in U (it 

would have to have type -1 in U, and there is no way for this to happen without 

x occurring in a subterm K[f] of U). (hx)(K[U]) = K[K[U]]; again, U cannot 

contain n. The assertion about types is straightforward to verify. The proof of the 

Abstraction Theorem is complete. 0 

Corollary. Let T be a term of the language of TRCP and let x and y be variables 
satisfying the conditions satisfied by x in the Abstraction Theorem. It follows that 

there is a term (Axy)(T) not containing x or y such that ‘(Axy)(T)(x, y) = T’ is a 

theorem of TRCP. 

Proof. Just as above, except that (Amy) = n,; (Ary)(y) = m,; all references to 

‘not containing x’ are replaced with references to ‘not containing x or y’. 0 

Using the Abstraction Theorem and Corollary, it is easy to show that TRCP is 

equivalent to a kcalculus which we now define. The atomic terms of this 

&calculus are Eq and variables. If f and g are terms of the &calculus, f(g) and 

(f, g) are terms of the A-calculus. We define relative type of subterms of a term as 

in TRCP for these term constructions and declare the relative type of f to be 

n - 1 if the relative type of (I.xy)(f) . IS n. If f is a term of this kcalculus and x, y 

are variables which do not occur in f as subterms of terms (ilzw)(g) or with 

relative type other than 0, then (ky)(f) is a term of this h-calculus. We define 
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(WV) as (IZyz)U? h w ere T’ is the result of replacing x with (y, z) in T, y and 
z not occurring in T. The advantage of the use of (jlxy)(f) as the primitive form is 
that we do not need primitive notions or axioms of projection. Axioms (Const), 
(Proj) and (Abst) of TRCP are replaced with the axiom scheme ‘(Axy) 
(T)(x, y) = T’; axioms which contain n, and ads replace these with (buy)(x) 
and (by)(y), respectively. It is clear that axioms (Const), (Proj) and (Abst) are 
special cases of the axiom scheme provided, with suitable definitions of .76r, n2, 
Comp and K[f]; the Corollary to the Abstraction Theorem shows that inter- 
pretations of all instances of this axiom scheme follow from the axioms of TRCP. 

We now note that it is ‘almost’ possible to interpret TRCP in NFP. The (failed) 
argument for this is essentially the same as the (complex) argument for the 
interpretation of TRC in NF given in [2]. The constructions in this argument are 
clearly valid in NFI; one apparent problem with validity in NFP is the occurrence 
of references to the set of natural numbers in the construction of the ordered pair 
of Quine and similar constructions. However, the relative types of natural 
numbers used in the construction of the Quine ordered pair (and the analogous 
constructions) are low enough that all references to ‘elements of the set N of 
natural numbers’ can be replaced with references to ‘elements of elements of the 
set USC[N] of singletons of natural numbers’; USC[N] is a set in NFP. The fatal 
problem arises in the definition of the map Push from the universe onto the set of 
functions; we do not know how to show that this map exists in NFP (although it 
can be shown to exist in NFI). There may be ways to evade this difficulty, but we 
have not found one. 

3. The attempt to interpret NFP in TRCP 

The attempted interpretation of NFP in TRCP is also analogous to the 
interpretation of NF in TRC given in [2], but we give it in more detail. We use 
the terms n1 and ads to represent the truth-values True and False, respectively. 
We refer to a term f such that ‘f(x) = n, or f(x) = n2 for all x’ is a theorem as a 
‘characteristic function term’, and use characteristic function terms to represent 
sets in the natural way. 

We represent the logical operations of negation, conjunction and disjunction by 
the symbols -, & and 11, respectively. 

We now construct characteristic function terms ‘{x ) $}’ for certain formulae # 
and variables x, which will not contain x and will satisfy {x 1 $}(x) = n1 if @ and 

i”i@E)= z2 if -$L We define {x 1 T = U} as (Ax)(Eq(T, V)); we define 

as {x I lx I e>(x) = ~4 and {x I # & V> 
t= I V)(X)) = (JG, JG)); we define lx I (VY)(V)) 

as {x I ({x I #>(x), 
as {x I {Y I q> = WblI- Of 

course, these definitions succeed only under certain conditions. 
We apply a technique adapted from the proof of the Abstraction Theorem for 

full TRC in PI: K[(f, 811 = (WI, K[gl) and W(g)] = Comp(f, %I) are easy 
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theorems of TRCP, which can be used to eliminate all occurrences of the 

K-constructor other than iterated applications to atomic terms. This gives us the 

ability to define abstracts under more general circumstances. If x appears with the 

same nonnegative type it wherever it appears in T and U, and does not appear in 

the scope of a K-constructor in the simplified form K”[Eq(T, U)]’ of 

K”[Eq(T, U)], then it is possible to define (Ax)(Eq(T, U)) and thus {x 1 T = U} 

as (Ax)(Eq(K”[Eq(T, U)]‘, K”[~di])). The abstracts used in defining {X 1 -$} and 

{x 1 #I & I)} always exist, subject to inductive hypothesis, but this technique may 

be used to extend the scope of the definition of {x ( @y)(q)}. We call a condition 

4 ‘stratified’ if we can assign a type to each variable and a type to each term 

appearing in the formula (the two sides of an equation are assigned the same 

type) in such a way that the type of each variable relative to each term in the 

formula in which it appears is the result of subtracting the type assigned to the 

term from the type assigned to the variable. We claim that for any stratified 

condition @ in which neither the variable x nor any bound variable nor any 

K-construct having x or a bound variable in its scope is assigned type higher than 

that of x (the assigned types can clearly be extended to every subterm of a term in 

the formula), {x ( $} can be defined. For each subformula {x 1 T = U}, the 

conditions ensure that (Lx)(Eq(T, U)) can be defined as indicated in the previous 

paragraph. If x does not occur in T or U, one must nonetheless modify types as 

indicated in constructing (hx)(Eq(T, U)) so that the relations between the types 

of variables in the interpretations of different subformulae is correct (the assigned 

types of T and U are used to determine the type of the absent occurrences of x). 

The constructions for formulae constructed by negation and conjunction succeed 

if they succeed for the subformulae. The construction for {x I (Vy)(v)} may run 

into difficulty if {y I I+V} d oes not exist due to y having too low a type. The trick is 

that if the type of y is n - m, one may convert r+~ to a form in which y appears 

only in the context K”[y] (using the simplification above to eliminate complex 

K-constructs and using (Const) to introduce additional applications of K where 

necessary). By hypothesis on types of variables and K-constructs, K”+‘[y] will 

not occur. Replace K”[y] by a variable z not found in v; the set {z I q} is 

defined by inductive hypothesis (induction on length of formulae), and may more 

instructively be called {K”[y] I IJI}. {x I { y 1 I)} = K[J~,]} may be defined as 

{x I {K’YYI I ly> =K”+l]~il>, w h ere abstraction succeeds. We can then give a 

‘natural’ interpretation of ‘x E y’ as ‘y(x) = n1 & (Vz)(y(z) = nl 11 y(z) = JQ)‘. A 

formula $J which translates a formula of NFP which is stratified and contains no 

bound variable with type higher than that of x will satisfy the conditions given 

above for existence of {x I @}. 
We thus successfully obtain (as in [2] for NF) an interpretation of the 

comprehension scheme of NFP but without extensionality; each object which is 

not a ‘characteristic function’ is interpreted as an ‘ur-element’. In [2], we solved 

this problem by defining a bijection Push from the universe onto characteristic 

functions and redefining ‘x E y’ as ‘Push(y)(x) = ads’. The interpreted set ‘{x I @}’ 
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is the inverse image under Push of the characteristic function of the collection of 
objects satisfying the translation of the formula #. We observed that each TRC 
function f can be sent to the function Setof = {(x, y) ) f(x) = y }. The function 
Setof exists in TRCP as well. We could then define Pushset, the inductive closure 
of the collection of noncharacteristic functions under Setof, and define Push as 
being Setof on elements of Pushset and the identity elsewhere. The problem here 
is that (the characteristic function of) Pushset cannot be defined in TRCP for the 
same reason that N cannot be defined in NFP; it is defined using a quantifier over 
all characteristic functions of sets containing the noncharacteristic functions and 
closed under Setof, and these would be assigned the same relative type as that of 
the set whose characteristic function is being defined. It follows that Push cannot 
be defined in TRCP in the way that it was defined in [2]. Note that the 
interpretation of NFP in TRCP or vice versa succeeds in the presence of the local 
version of the assertion ‘there is a bijection between the class of functions and the 
class of characteristic functions’; if there is such a bijection which is predicatively 
definable, the two theories are equivalent. An assumption sufficient to establish 
the existence of such a bijection is the Schroder-Bernstein Theorem, which 
apparently cannot be proven in NFP. 

4. TRCI introduced 

We now introduce the theory TRCI. TRCI extends TRCP. It has an additional 
term construction: Abst[f] is a term if f contains no variable of nonnegative type 
and contains no Abst construct except as a subterm of a subterm of negative type; 
f will be a substitution instance in TRCI of a term of TRCP containing no 
variable of nonnegative type. If Abst[f] h as relative type IZ, so does 5 The 
additional axiom scheme of TRCI defining the behaviour of Abst is 

(Abst’): AWflk) =fW[hl)(dh)). 
The argument for equivalence between TRCI and NFI succeeds. To see this, 

we first need the following additional theorem. 

Abstraction Theorem for TRCI. Let T be a term of TRCI containing no variable 
of positive type, and let x be a variable which occurs in T with no type other than 0 
and does not appear within the scope of any Abst construct or within the scope of 
any K-construct which itself is within a K-construct. Then (iLu)( T) exists as above. 

Proof. Use the technique given above to eliminate all complex K-constructs. The 
only original case of the inductive definition of (Ax)(T) which needs to be 
modified is the case (Ax)(U(V)), . m which it is possible that U may contain K[x] 
with type 0 and not within the scope of any K-construct or Abst construct, so that 
U can be expressed in the form f (K[x]) f or some f (using Abstraction for TRCP), 
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and (W(W)) can be defined as Abst[f]((Ax)(V)) (f will clearly contain no 
variable of nonnegative type); it needs to be observed that (ilx)(K[A]) must still 
be K[K[A]], because the only way for it to contain x would be if A were x or an 
iterated K-construct on x, in which case n would have the wrong relative type. 
(hx)(Abst[U]) is a trivial case, since U cannot contain x. 0 

Note that the Abstraction Theorem for TRCI is rtot stronger than the 
Abstraction Theorem for TRCP, which we will still need to use (with the 
additional condition that the bound variable not appear in an Abst construct). 

5. Equivalence of TRCI and NFI 

We observe that TRCI can be interpreted in NFI. The point which needs to be 
established is that the additional functions defined in (Abst’) can be interpreted in 
NFI. The place where NFI comprehension is needed is in establishing the 
existence of the functions Abst[f](g) for f a constant of TRCP and g any 
function; since Abst[f](g)(h) is supposed to be f(K[h])(g(h)), a bound variable 
representing K[h] will be needed at the same type as that of Abst[f](g). The 
dependence of Abst[f](g) on g is predicative. As in NFP, the construction of the 
Quine ordered pair and related structures presents no difficulty (in fact, no more 
difficulty in this case than in NF), and, as we remarked above, the definition of 
Push goes through in NFI just as in NF. 

We demonstrate that TRCI interprets NFI. Let # be a stratified condition in 
the language of TRCP in which no occurrence of a variable or of a K-construct 
with a variable in its scope has type more than one greater than the type of x. 
Convert $ to a form in which x occurs only in the context K[x], and define 
{K[x] 1 @} using the comprehension techniques of TRCP-note that {x 1 +}(x) = 
U+l 1 @Wbl) = Wxl 1 +Wbl)( nl, n2) can be satisfied by defining {x 1 c$} as 

AWMI I 4Il(K[( n1, ~41) ({WI I $1 cannot contain any variables of non- 
negative type). This gives us the ability to interpret NFI comprehension. The 
condition ‘Push(y) = z’ can be expressed in the language of TRCP using variables 
one type higher than the type of y: ‘y belongs to each set A which contains the 
noncharacteristic functions and is closed under Setof and Setof = z, or y fails 
to belong to some such set and y = z’. Define ‘x E y’ as “for some z, z(x) = rrl and 
‘Push(y) = z’ “. Let + be the translation of a stratified, ‘mildly impredicative’ 
condition on x. The highest type of variable mentioned is two higher than the 
type of x, occurring in translations of membership statements ‘U E v’ where u is of 
type one higher than x (and thus a parameter). These can be eliminated by 
eliminating reference to the parameter u in favor of reference to (the variable 
representing) Push(v), i.e., replace each formula “w(u) = n, & ‘Push(v) = W’ ” 
with ‘w(u) = x1’, the parameter w replacing the parameter Y, whenever u is of the 
highest possible type; this is legitimate because ‘Push(y) = z’ is provably a 
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bijective relation. Once this elimination is carried out, there are no variables used 
of type more than one higher than the type of X, and {x ( $I} can be defined using 
the procedure indicated above. 

We have established that the theories TRCI and NFI are precisely equivalent in 
consistency strength and expressive power. 
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