
Polymorphic type-checking for the ramified

theory of types of Principia Mathematica

M. Randall Holmes

September 2, 2011

Abstract

A formal presentation of the ramified theory of types of the Principia
Mathematica of Russell and Whitehead is given (along with the simplified
theory of types of Ramsey). The treatment is inspired by but differs
sharply from that in a recent paper of Kamareddine, Nederpelt and Laan.
Algorithms for determining whether propositional functions are well-typed
are described, including a complete algorithm for the ramified theory of
types, which is unusual in requiring reasoning about numerical inequalities
in the course of deduction of type judgments. Software implementing
these algorithms has been developed by the author, and examples of the
use of the software are presented. The approach is compared with that of
Kamareddine, Nederpelt and Laan, and some brief observations are made
about use of the type checker in a proof checker for the ramified theory
of types under development.

1 Introduction

This paper was inspired by careful reading of the paper [4], where Kamareddine,
Nederpelt and Laan present a formalization of the ramified theory of types
(hereinafter RTT) of [7], the Principia Mathematica of Russell and Whitehead
(hereinafter PM). It is surprising to discover on close reading of PM that its
theory of types (the oldest one) is nowhere given a complete formal description
which is up to modern standards of rigor. There are various formal systems of
ramified type theory in the literature (the author has even presented one, based
on earlier work of Marcel Crabbé, in [2]), but the one in [4] is clearly motivated
by a desire to closely implement the notation of PM , although the approach to
formalization of reasoning about types they take is much more modern.

During our reading of [4] we developed a type checker ([3]) for the formalized
version of RTT presented in that paper. The approach we took to the type
system in the course of the development of this checker was quite different from
the approach taken in [4], and allows type-checking for a wider range of terms
of the language of RTT than does the system of [4]. From the implementation
of type checking we developed at that time, it is possible to “reverse engineer”
a formal treatment of the type system of RTT , which we give here.

1

We appeciate useful conversations with Professor Kamareddine (and access
to the LaTeX source of [4] to facilitate typesetting of the examples taken or
adapted from that paper), and also the helpful remarks of anonymous referees.

2 Informal Presentation of the System of Prin-
cipia Mathematica

We give an informal presentation of the notions of proposition and propositional
function as actually given in PM , in order to motivate the formalization of [4].
We feel that such a presentation is necessary because superficial examination
reveals that the system of [4] is not identical to the system presented in PM .
This section is intended to provide support for the claim that the system of
[4] (with certain modifications which we will indicate) is in fact an accurate
formalization of the intentions of PM .

At the outset, PM takes some selection of the propositional connectives as
primitive. We follow the original text and take negation and disjunction as
primitive; the last edition of PM suggests the use of the Sheffer stroke. It
should be noted that PM uses propositional variables, a feature not found in
[4], and we include propositional variables in our formal language developed
below. Propositional variables are not important for the investigation of type
theory of propositional functions (in fact, no propositional variable is allowed
to appear in a propositional function in our implementation) but they turn out
to be indispensible in practical formalization of reasoning about propositions.

The “atomic propositions” of PM are of the form Rn(ai1 , . . . , ain), in which
Rn is an n-ary predicate of individuals and the aij ’s are names of individuals.
The type of individuals is the sole base type of the system of PM . The system
of [4] allows the case n = 0, which would give us constant propositions R0();
PM does not allow this. Our software allows one to choose to allow or exclude
0-ary predicates.

The “elementary propositions” of PM are formed by combining atomic
propositions with logical connectives.

Variables (taking individual values at this point) are now introduced. Vari-
ables (when representing individuals) can appear in the same contexts as indi-
vidual constants. An elementary proposition containing variables is an ambigu-
ous proposition (its meaning is not determined until values are assigned to the
variables).

The next step is to introduce propositional functions. A propositional func-
tion is obtained by replacing each variable x in an ambiguous elementary propo-
sition with x̂. The resulting expression denotes a function of as many variables
as appear in it. The order in which arguments are supplied to the function is
determined by the alphabetical order of the variables appearing in it (in our
notation, this is determined by the order of the numerical indices of the vari-
ables). For example, in an arithmetic context x̂ < ŷ and b̂ > â would be the
same propositional function (or at least would have the same extension).

2

PM defines quantifiers in terms of propositional functions. The sentence
(x)(φx) ((∀x.φ(x)) in our notation) is obtained by applying an operation of
“generalization” to the propositional function φx̂. The official line in PM is
that propositions in which quantified sentences appear as arguments of proposi-
tional connectives do not really occur: a system of contextual definitions “defines
away” sentences which apparently have this feature as sentences in prenex nor-
mal form. It would be extraordinarily inconvenient to actually take this view
in a computer implementation, and fortunately PM presents an alternative for-
mulation of logical rules for quantified sentences which allows the propositional
functions to take quantified sentences as arguments in the usual way. The one
unfamiliar feature is that since a propositional function must actually contain
its variable argument, the scope of a quantifier must include a free occurrence of
the quantified variable for the sentence to be well-formed, and our software does
enforce this. Our formalization does not otherwise acknowledge the dependence
of quantifiers on propositional functions.

Since we take this view, we associate propositional functions φx̂ with quan-
tified sentences φx of arbitrary complexity with free occurrences of the variable
x.

We now discuss higher-order variables and propositional functions. The no-
tation of PM for arbitrary ambiguous propositions, considered as propositional
functions, is φx̂, φ(x̂, ŷ), etc. Parentheses are not used to enclose argument
lists of length one, and argument lists of length 0 (yielding variable propositions
φ()) do not occur, though they do occur in the system of [4]; permission to use
such expressions can be turned on or off in our software. Note that variables
φ have been introduced representing propositional functions. An eccentricity
of the PM notation is that when φx̂ occurs as an argument to a propositional
function, it is written φx̂, not φ. Quantifiers over functions are written (φ), (∃φ),
though there is an assertion in PM that this is an abbreviation for (φx̂), (∃φx̂).
This penchant for complex “variables” for propositional functions seems to be
motivated by a desire to clearly indicate the status (for PM) of propositional
functions as “incomplete symbols”.

It seems to us that the implementation of this in more complicated cases in
PM is incorrect. For example, PM tells us (p. 52) that F (φx̂) is an ambiguous
expression for a function with a single argument which is itself a propositional
function of a single individual variable. We are then told that a variable rep-
resenting a function of this kind would be written F (φ̂x̂) (with the circumflex

over the φ). But this seems wrong. The symbol φ̂x̂ should be a constant, the
name for the propositional function A such that A(φx̂, a) = φa (this function is
often mentioned as an example in PM , but notation for it is never given). So

F (φ̂x̂) should represent the application of an ambiguous third-order function to
this constant second-order function. A bound variable standing for an arbitrary

first order function should properly be written φ̂x̂ (with the circumflex over the
entire complex variable), and a variable second-order function should be written

F (φ̂x̂). It is not our purpose here to reform the notation of PM , as we actually
prefer the notation of [4], but this problem ought to be noted.

3

Constant propositional functions do not appear in applied position either in
PM or in [4]. The reason for this is that a constant propositional function is
an expression with holes in it, and to apply the function is to substitute the ar-
guments for the holes in the original expression. Our computer implementation
does support syntax for constant function application without substitution, but
we will not use it here.

Because of the very limited use of notation for propositional functions in
PM , we do not see examples of constant propositional functions appearing as
arguments to propositional functions in PM , but it seems reasonable that if
one were to take the function F (x̂ = ŷ, a, b), and instantiate F with φ̂(ẑ, ŵ),
that one would obtain a = b. At any rate, this extension of notation (allowing
constant propositional functions to appear as arguments) is found in [4].

Simple variables do not always represent individuals. PM takes advantage
of “systematic ambiguity” (what we would call “polymorphism”); the type of
variables whose type cannot be determined by examination of an expression
may be arbitrarily complex. But any variable which appears in applied position
somewhere in a proposition or propositional function will appear with formal
arguments whenever it appears as an argument to a variable function itself.

We now discuss the types and orders of PM . PM does not anywhere give a
formalized discussion of its type system; in fact, there is no notation for types
in PM ! But the informal discussion is clear enough that the intentions of the
authors can be determined.

Type is determined as follows. The simplest type is that of individuals. The
type of a propositional function (abstracting out the order of the type, which we
will address in the next paragraph) is determined by the types of its arguments.

Every type has an order. The order of the type of individuals is 0. The order
of a propositional function is one plus the maximum of the orders of the types of
its arguments and the orders of the types of quantified variables. It is the effect
of quantification on order that makes order a nontrivial concept. The motivation
of this concept is that a quantified sentence is viewed as being in effect an infinite
disjunction or conjunction over the type of the quantified variable: thus it is
important to prevent the possibility of a propositional function containing a
quantifier over its own type (or a more complex type), as this would lead to a
formal circularity.

Ramsey simplified the type system of PM to eliminate the orders: this
“simple theory of types” (contrasted with the “ramified theory of types” of
PM) is discussed in [4] and in this paper as well.

Thus for any list of types of arguments to be supplied to a function, an
infinite sequence of function types of progressively higher order is obtained.
PM gives a special status to “predicative” functions, whose order is the least
possible given the orders of the types of the arguments of the function, and
whose arguments are all in their turn of predicative types. A special notation
φ!x is used for the application of functions of predicative types. This notation
is not used in [4], but we introduce it here, with a generalization. For us,
φ!(x1, . . . , xn) refers to a function of the arguments xi whose order is the least
possible given the orders of the types of the xi’s, but we do not require that the

4

types of the xi’s be predicative themselves for this notation to be used.
We can now briefly describe the notation of [4] (our extension of this notation

is formally described in the next section). In the notation of [4], all variables
are simply letters (possibly with numerical suffixes), and there are no circum-
flexed variables. All occurrences of variables within propositional functions are
to be understood as circumflexed (bound as arguments of the propositional func-
tion). The only ambiguity this introduces is that a top-level expression for a
proposition looks the same as the expression for the corresponding propositional
function. This ambiguity exists only at the top level, because propositions do
not occur as arguments to propositional functions. It appears that a formal-
ized version of the language of PM along the lines suggested above (with the
correction to scopes of circumflexes) would be readily intertranslatable with the
language based on that of [4] which we describe formally in the next section,
mod occasional renamings of bound variables due to the fact that a bound in-
dividual variable and a bound function variable in different contexts might take
the same shape in this language and would have to renamed before translation
into the original PM notation.

3 Propositions as Mere Syntax

The logical world of PM is inhabited by individuals and propositional functions.
We usually abbreviate the phrase “propositional function” as “pf”, following [4].
In this section, we formally describe the notation for propositions and pfs.

Notation for individuals is simplicity itself: an individual is denoted by one
of the symbols a1, a2, a3, . . . (in the computer implementation, a1, a2, a3...).

Before we present the notation for propositions, we need to introduce vari-
ables and primitive relation symbols. A variable is one of the symbols x1, x2, x3, . . .
(x1, x2, x3... in the computer implementation). (We call these “general”
variables on the few occasions when we need to distinguish them from “propo-
sitional variables” introduced below.) A primitive relation symbol is a string of
upper-case letters with a numerical subscript indicating its arity (in the paper,
R1 and S2 are primitive relation symbols: these would be R1 and S2 in the
computer implementation).

We note that we will freely use the word “term” in the sequel for any piece
of notation, whether propositional notation, the name of an individual, or a
general variable.

Now we present the definition of notation for propositions. The notion of
free occurrence of a (general) variable in a proposition is defined at the same
time.

In the system of [4], any notation for a proposition is also notation for a
propositional function. It is necessary here to exclude propositional notations
which contain propositional variables (which do not occur in [4]). In PM (e.g.,
on p. 38) it states clearly that a proposition must contain a free variable to
be read as a propositional function, which motivates the implementation in our
software of an option to exclude 0-ary relation symbols and pfs. If 0-ary pfs

5

are excluded, a propositional notation will be a pf notation iff it contains no
propositional variables and at least one free general variable. If 0-ary pfs are
permitted, the criterion is simply that the notation contain no propositional
variable.

propositional variable: A variable taken from p1, p2, p3 . . . (p1, p2, p3...

in the computer implementation) is a proposition. This is a propositional
variable. (There are no propositional variables in the system of [4], but
there are in PM). No (general) variables occur, free or otherwise, in a
propositional variable.

atomic proposition: A symbol Rn(v1, . . . , vn) consisting of a primitive rela-
tion symbol with arity n followed by a list of n arguments vi, each of which
is either a variable xji or an individual constant aji , is an atomic propo-
sition. (R0() is also an atomic proposition in the system of [4], and for
us if we admit 0-ary pfs). The free occurrences of variables in an atomic
proposition are exactly the typographical occurrences of variables in it.

negation: If P is a proposition, then ¬P (∼P in the computer implementation)
is a proposition, the negation of the proposition P . The free occurrences
of variables in ¬P are precisely the free occurrences of variables in P .

binary propositional connectives: If P andQ are propositions, then (P∨Q)
is a proposition. Disjunction is the only primitive binary propositional
connective in PM , but we will allow use of other connectives: (P → Q),
(P ∧Q), (P ≡ Q) with the usual meanings. In the computer implementa-
tion, propositional connectives are strings of lower case letters: (P v Q),

(P implies Q), (P and Q), (P iff Q). The free occurrences of vari-
ables in (P ∨Q) are the free occurrences of variables in P and Q; the rule
is the same if a different binary propositional connective is used.

quantifiers: If P is a proposition in which the variable xi occurs free (this
stipulation is what requires us to define freedom of variables at the same
time as syntax of propositions), (∀xi.P) is a proposition (this is writ-
ten [xi]P in the computer implementation). The existential quantifier
(∃xi.P) (written [Exi]P in the computer implementation) can be intro-
duced by definition: the computer allows any string of upper-case letters
to be used as a quantifier, and other quantifiers could be introduced. The
free occurrences of variables in (∀xi.P) are the free occurrences of variables
other than xi in P ; the rule would be the same for any other quantifier.

In [4], the structure of the typing algorithm required the attachment of
explicit type labels to variables bound by quantifiers. In our system, this
is not necessary. This is closer to the situation in PM , where no type
indices appear (though numerical indices representing orders do appear
occasionally).

propositional function application (“matrix” and general): If xi is a vari-
able and A1, . . . , An is an argument list in which each Ai is of one of

6

the forms aji (an individual constant), xji (a variable) or Pi (notation
for a proposition, suitable to represent a pf), then xi(A1, . . . , An) and
xi!(A1, . . . , An) are propositions. In the latter notation, the exclamation
point indicates that the “order” of the type of the variable xi is as low as
possible: this will be clarified when types and orders are discussed. The
notation xi!(A1, . . . , An) does not appear in the paper [4]; its use in this
paper is a generalization of the use of a similar notation for “matrices”
(predicative functions) in PM . xi() is also a proposition in the system of
[4] (the variable xi represents a proposition in this case); xi() and xi!()
are propositions for us as well if we admit 0-ary pfs. The free occurrences
of variables in xi(A1, . . . , An) or xi!(A1, . . . , An) are the head occurrences
of xi and those Ai’s which are variables: note carefully that the free oc-
currences of variables in those Ai’s which are propositional notations are
not free occurrences of variables in xi(A1, . . . , An) or xi!(A1, . . . , An).

completeness of definition: All propositional notations are constructed in
this way.

As usual, an occurrence of a variable in a proposition which is not free is
said to be bound. Note that a variable xi is not a propositional notation.

There are no binders in notation for a propositional function, which will give
our treatment a somewhat unfamiliar flavor. Since we do not have head binders
to determine the order of multiple arguments, we allow the order of the indices
of the variables (which we may refer to occasionally as “alphabetical order”) to
determine the order in which arguments are to be supplied to the function.

We refer to the atomic propositions and the pf application terms as “logically
atomic” (propositional variables are also logically atomic, but they do not occur
in pf notations), and to other terms as “logically composite”.

4 The Definition of Substitution and Its Failure

We now give the recursive definition of simultaneous substitution of a list of
individuals, variables and/or pfs Ak for variables xik in a proposition P , for
which we use the notation P [Ak/xik]. The clauses of the definition follow the
syntax. It is required that the subscripts ik be distinct for different values of k.

propositional variable: pj [Ak/xik] = pj .

atomic propositions: Let Rn(v1, . . . , vn) be an atomic proposition. For each
vi and index k, define v′i as Ak if vi is typographically the same as xik ;
define v′i as vi if it is not typographically the same as any xik . If any v′i
is a propositional function, Rn(v1, . . . , vn)[Ak/xik] is undefined; otherwise
Rn(v1, . . . , vn)[Ak/xik] is defined as Rn(v′1, . . . , v

′
n).

negation: (¬P)[Ak/xik] = ¬(P [Ak/xik])

binary propositional connectives: (P∨Q)[Ak/xik] = (P [Ak/xik]∨Q[Ak/xik]).
The rule is the same for any binary propositional connective.

7

quantification: Let (∀xj .P) be a quantified sentence (the rule is the same for
any quantifier). Define A′k as xj in case ik = j and as Ak otherwise. Then
(∀xj .P)[Ak/xik] is defined as (∀xj .P [A′k/xik]).

propositional function variable application: Let xj(V1, . . . , Vn) or
xj !(V1, . . . , Vn) be a proposition built by pf application. Define B′ for any
notation B as Ak if B is typographically xik and as B otherwise. We de-
fine xj(V1, . . . , Vn)[Ak/xik] as x′j(V

′
1 , . . . , V

′
n) and xj !(V1, . . . , Vn)[Ak/xik]

as x′j !(V
′
1 , . . . , V

′
n) except in the case where x′j is a pf notation Q: in this

case something rather more complicated happens. It will be undefined
unless there are precisely n variables which occur free in Q. If there are
n variables which occur free in Q, define tk so that xtk is the kth free
variable in Q in alphabetical order. Then define xj(V1, . . . , Vn)[Ak/xik] or
xj !(V1, . . . , Vn)[Ak/xik] as Q[V ′k/xtk].

There is a serious difficulty with this “definition”. Consider the pf ¬x1(x1).
Substitute ¬x1(x1) for the variable x1 in the proposition ¬x1(x1) itself. We
will obtain the negation of the result of replacing x1 with ¬x1(x1) in x1(x1).
Giving ¬x1(x1) the name R for the moment, we see that the result of the latter
substitution will be R[R/x1]; but this is exactly the substitution we started out
trying to make, so we have an infinite regress. This shows that the proposed
“definition” of substitution is essentially circular – in the last clause, there
is no guarantee that the instance of substitution Q[V ′k/xtk] to be carried out
is “simpler” in any way than the original substitution x′j(V1, . . . , Vn)[Ak/xik]
being defined, and our example shows that it need not be.

It is hoped that the reader will notice that this is essentially Russell’s paradox
of naive set theory. Our solution will be the official solution of PM : we will
impose a type system, under which the term ¬x1(x1) will fail to denote a pf,
and the problem will disappear. For the moment, we withdraw the definition of
substitution; we will return to it after we have presented the type system.

The self-contained approach to the definition of substitution taken here may
be contrasted with the rather elaborate invocation of λ-calculus in [4]. Though
our definition appears to have failed at this point, the type system will allow
us to give the definition above as a legitimate inductive definition. The reason
we can do this and the authors of [4] cannot is that their definition of the
typing algorithm depends on the notion of substitution, and ours does not.
(The definition of our type algorithm does rely on the notion of substitution
into notations for types, but the definition of substitution into type notations
does not present such logical complications).

5 The Simple Theory of Types

We follow [4] in presenting the simple theory of types without orders first, though
historically it was presented by Ramsey as a simplification of the ramified theory
of types of PM .

8

The base type of the system of PM is the type 0 inhabited by individuals.
(Nothing prevents the adoption of additional base types, or indeed the avoidance
of commitment to any base type at all).

All other types are inhabited by propositional functions. In the simple theory
of types, the type of a pf is determined precisely by the list of types of its
arguments.

We introduce notation for simple types:

Individuals: 0 is a type notation.

Propositions: () is a type notation (for the type of propositions).

Propositional Functions: If t1, . . . , tn are type notations, (t1, . . . , tn) is a
type notation. (If 0-ary pfs are excluded, no complex type will have () as
a component; this will be enforced by requiring ti 6= () here).

Variable Types: For each variable xi, we provide a type notation [xi]. (This
notation is an innovation for this paper: it represents an unknown (poly-
morphic) type to be assigned to xi; these types may also be called “poly-
morphic types”).

Completeness of Definition: All simple type notations are derived in this
way.

No Nontrivial Identifications: Types not containing variable types are equal
precisely if they are typographically identical.

As is noted in [4], there is no notation for types in PM : this notation is
apparently due to Ramsey (except for our innovation of variable types, whose
purpose will become clear below).

Our aim in this essay is to avoid the necessity of assigning types overtly to
variables, which is truer to the approach taken in PM itself. It is useful to
consider what a system with explicit type assignment would look like, though.

The type assignment is represented as a partial function from terms to types:
τ(xi) is the type to be assigned to xi, and more generally τ(t) is the type to be
assigned to the individual constant, variable, or propositional function t. Types
in the range of τ are constant types (they contain no type variables [xi]). We
require that bound variables be typed as well as free variables, and identity of
variables does for us imply identity of type regardless of free or bound status.
We stipulate that every variable is in the range of τ and that the inverse image
of each type under τ contains infinitely many variables: this has the same effect
as providing infinitely many variables labelled with each type. The following
rules simultaneously tell us which terms are typable (have values under τ) and
how to compute the value of τ if there is one. Functions τ satisfying these rules
are called “type functions on P”, where P is a fixed proposition or propositional
function.

individuals: If xi appears as an argument in an atomic subproposition of P ,
τ(xi) = 0. τ(ai) = 0 for any individual constant ai.

9

propositional functions: If Q is a propositional function appearing as a sub-
term of P , every subterm of Q has a value under τ , and the n free variables
of Q, indexed in increasing order, are xik , τ(Q) = (τ(xi1), . . . , τ(xin)). If
Q contains no free variables, then τ(P) = ().

variable application: If xj(A1, . . . , An) or xj !(A1, . . . , An) is a subterm of P ,
then τ(xj) = (τ(A1), . . . , τ(An)).

These rules have to be understood as additional restrictions on well-formedness
of terms: a term P is to be considered well-formed iff there is a type function τ
on P . Notice that the value of τ at every term (or its lack of value) is completely
determined by the values of τ at variables. The process described terminates
by induction on the structure of propositional notations: to compute the type
assigned to any notation other than a variable or individual constant (or assess
its typability), we appeal only to the types assigned to proper subterms of that
notation, and we are given types of variables and individual constants at the
outset.

A weakening of this algorithm is possible if we take into account the pos-
sibility of renaming bound variables. This is implemented in our software for
the simple theory of types, both for quantified variables and for most variables
appearing in pf arguments, but not in the ramified type theory implementation.
Renaming of bound variables can be forced by a command in the software prior
to application of the type algorithm, however.

We now proceed to develop a system for expressing and reasoning about type
assignments to subterms of pfs, adopting rules on the basis of their validity for
an intended interpretation in terms of type functions.

There are four kinds of type judgments. In the following, P stands for a
propositional or pf notation, t, u stand for types (variable types [xi] are permit-
ted to appear as types and as components of complex types) and xi stands for
a general variable.

ill-typedness: “P is ill-typed” is defined as “there is no type function τ on
P”.

propositional function type assignment: “P has type t” means “for all
type functions τ on P , τ(P) = t”, where any type [xi] appearing in t
is interpreted as τ(xi).

variable type assignment: “xi has type t in P” means “for all type functions
τ on P , τ(xi) = t”, where any type [xj] appearing in t is interpreted as
τ(xj).

type equality: “t = u in P” is defined as “for all type functions τ on P , t = u”,
where any type [xj] appearing in t or u is interpreted as τ(xj).

We now develop rules for deduction about type judgments, showing that the
rules are valid in the intended interpretation.

10

We begin with the observation that the conditions defining a type function
on P depend only on the appearances of variables in logically atomic subterms of
P : these conditions assign types to arguments appearing in atomic propositions,
to propositional functions, which can only appear as arguments of propositional
function application terms, and to the head variables of propositional function
application terms. It follows immediately from this that τ is a type function on
P under precisely the same conditions under which it is a type function on ¬P
or on (∀xi.P) (if the latter is well-formed), since these terms contain precisely
the same logically atomic subterms. Further, it follows that any type function
on (P ∨ Q) is also a type function on P and on Q, since it will satisfy the
conditions on logically atomic subterms of P and Q, since the set of logically
atomic subterms of (P ∨Q) is the union of the set of logically atomic subterms
of P and the set of logically atomic subterms of Q.

These facts can be expressed in terms of type judgments:

negations: ¬P is ill-typed iff P is ill-typed. xi has type t in ¬P iff xi has type
t in P .

quantification: (∀xi.P) (if well-formed) is ill-typed iff P is ill-typed. xj has
type t in (∀xi.P) iff xj has type t in P .

binary propositional connectives: If P or Q is ill-typed, (P ∨Q) is ill-typed
(note that this is equivalent to “if there is a type function on (P ∨Q) there
is a type function on P and a type function on Q”). If xi has type t in P
or xi has type t in Q, then xi has type t in (P ∨Q). (Note that if τ(xi) = t
must be true for any type function τ on some subterm of P , it must be
true for any type function τ on P .)

There are three kinds of occurrences of variables in logically atomic subterms;
the ways in which these occurrences are typed are summarized by the following
rules:

individual variables: If xi = Ak in Rn(A1, . . . , An), then xi has type 0 in
Rn(A1, . . . , An).

applied variables: If Ai has type ti for each i, then xj has type (t1, . . . , tn) in
xj(A1, . . . , Ak) or xj !(A1, . . . , Ak).

argument variables: xi has type [xi] in P for any propositional function P
(this expresses the fact that the appearance of a variable as an argument
of a pf application term does not constrain its type at all).

In this way a possibly variable type may be assigned to each occurrence of a
variable. This is called the “local” type of the occurrence. However, more than
one typographically different type may be assigned to the same variable. For
example, x1 is assigned type 0 and type [x1] in R1(x1)∨x2(x1). Different types
assigned to the same variable will of course be equal. We can express this in
terms of type judgments.

11

multiple types: If xi has type t in P and xi has type u in P then t = u in P .

variable type equations: If [xi] = t in P then xi has type t in P .

Definition: We assign an integer arity to each type which is not a type variable.
0 has arity −1. () has arity 0. (t1, . . . , tn) has arity n. Note that a type
may have variable type components, but it will still have arity if it is not
itself a type variable. Note also that types which are equal will have equal
arity if their arity is defined.

type distinction: If t and u each have arity and have distinct arities and t = u
in P , then P is ill-typed.

absurdity: If P is ill-typed, then P has type t, t = u in P and xi has type
t in P for any t, u, and xi (this is obviously correct under the intended
interpretation – we need it for a completeness result).

componentwise equality: If (t1, . . . , tn) = (u1, . . . , un) in P , then ti = ui in
P for each i.

type substitution: If xi has type t in P and xj has type u in P , then xj has
the type u[t/[xi]] obtained by substituting t for all occurrences of [xi] in
u.

A consideration related to type substitution is that no type can be ill-
founded: the type of a variable xi cannot have [xi] as a proper component.

ill-foundedness: If xi has type t in P and t[t/[xi]] 6= t, then P is ill-typed.

Finally, we need the rule for typing propositional functions.

propositional function type: If the variables free in P , listed in order of
increasing index, are (xi1 , . . . , xin) and xik has type tk for each k, then P
has type (t1, . . . , tn).

An additional rule is stated which we do not use in the computer implemen-
tation for simple type theory (though we do use it in ramified type theory), but
which is needed for a completeness result for type functions as we have defined
them.

types from arguments: If xi has type t inAk, then xi has type t in xj(A1, . . . , An)
and xj !(A1, . . . , An).

It should be clear from our discussion that each of these rules is sound for
the intended interpretation. We will prove that this set of rules is complete for
the intended interpretation as well.

Theorem: For each propositional function P , there is a type t such that “P
has type t” is deducible from the rules above and the types possible as
values τ(P) for a type function τ on P are precisely the types obtainable
by substituting an arbitrary type for each type variable appearing in t.

12

Proof of Theorem: We describe the computation of the type t. The idea
is to construct a set of judgments “xi has type ti” deducible using the
type judgment rules which satisfies all the rules for a type function except
for possibly containing type variables: arbitrary instantiation of the type
variables then yields a true type function.

Begin the construction of the set of judgments by computing the “local”
type of each occurrence of each variable xi. We prove the theorem by
structural induction: we assume that each pf argument of a pf application
subterm of P can be assigned a type satisfying the conditions of the the-
orem (this is needed to compute the “local” types of head variables of pf
application terms).

The only way in which this can fail to induce a type function on P (mod
instantiation of type variables with concrete types) is if more than one type
is assigned to the same variable. We show how to resolve such situations.

If any variable is assigned types of different arities, the process terminates
with the judgment that P is ill-typed. If any variable xi is assigned a type
which contains [xi] as a proper component, the process terminates with
the judgment that P is ill-typed.

If xi is assigned any type t which is not a variable type (including com-
posite types with variable components) replace all occurrences of [xi] in
types assigned to other variables with the type t. If xi is assigned type [xj]
(j 6= i), replace all occurrences of the type xmin{i,j} in types assigned to all
variables with the type xmax{i,j}. This is justified by the type substitution
rule. In the process described below, carry out these substitutions when-
ever a new type assignment is made. Notice that such a substitution will
occur at most once for any given variable xi, since it eliminates the target
type everywhere. Of course, if [xi] is introduced as a proper component
of the type of xi, terminate with a judgment of ill-typedness.

If xi is assigned types [xj] and t in P , add the judgment “xj has type t in
P” and eliminate the type assignment “xi has type [xj] in P” (note that
all occurrences of [xj] will then be eliminated if t is not a type variable).
In one special case we proceed differently: if xi is assigned types [xj] and
[xk], we assign xi, xj , and xk the type xmax{i,j,k}.

If xi is assigned types (t1, . . . , tn) and (u1, . . . , un) in P , the judgments
ti = ui follow for each relevant i. From these equality judgments continue
to deduce further equality judgments in the same way. This process will
terminate with either a judgment that P is ill-typed or a finite nonempty
set of nontrivial judgments of the form [xk] = vk, each of which has “xk has
type vk” as a consequence, which we add to our list of type assignments.
Assign to xi the type which results if all these types xk are replaced with
the corresponding vk’s in either of the two types being reconciled (the
same type results in either case). Note that no new assignment to xi
can result, because [xi] cannot be a component of the type assigned to xi
unless P is ill-typed.

13

This process must terminate. Each step of the process described eliminates
at least one variable type [xi] from consideration or terminates with a
judgment of ill-typedness.

When the process terminates, we will either have concluded that P is
ill-typed (and this judgment will be honest because the rules are sound
for the intended interpretation) or we will have obtained a set of type
assignments to the variables appearing in P satisfying the conditions for a
type function: any instantiation of type variables appearing in these types
with constant types will give a type function on P .

It is important to note that this is a type algorithm based on the quite
standard approach of type unification implemented, for example, in the
type checking of the computer language ML (a standard reference is [5]).

The algorithm actually implemented in our software for simple type theory
differs from the theoretical algorithm in not using the rule deducing types of
variables from types of their occurrences in propositional function arguments.
This means that the type of a variable xi in a propositional function argument
will only interact with the types of variables in the larger term if the type [xi]
appears as a component type of the type of the argument. This is legitimate,
because we could arrange for all variables of the propositional function argument
(being bound) to be renamed to avoid collisions with types of variables appearing
elsewhere. However, variables whose polymorphic type appears in the type
assigned to the argument are not considered as being renamed.

We can now salvage the definition of substitution given above.

Convention: We stipulate henceforth that propositional notations are well-
formed iff they are well-formed under the original definition and the judg-
ment “P is ill-typed” cannot be deduced using the algorithm given above,
in the version which implicitly allows renaming of bound variables appear-
ing in pf arguments but not in their polymorphic types.

Theorem: P [Ak/xik], defined as above, will be well-defined as long as there is
a fixed set of substitutions σ of types for polymorphic type variables such
that the type of each Ak is the result of applying σ to the type of xik in
P .

Proof of Theorem: We only need to consider the case in which a propositional
function Q is substituted for the variable xj in a term xj(A1, . . . , An) or
xj !(A1, . . . , An).

We reproduce the problematic clause from the definition of substitution.

“Let xj(V1, . . . , Vn) or
xj !(V1, . . . , Vn) be a proposition built by pf application. Define B′ for any
notation B as Ak if B is typographically xik and as B otherwise. We de-
fine xj(V1, . . . , Vn)[Ak/xik] as x′j(V

′
1 , . . . , V

′
n) and xj !(V1, . . . , Vn)[Ak/xik]

as x′j !(V
′
1 , . . . , V

′
n) except in the case where x′j is a pf notation Q: in this

case something rather more complicated happens. It will be undefined

14

unless there are precisely n variables which occur free in Q. If there are
n variables which occur free in Q, define tk so that xtk is the kth free
variable in Q in alphabetical order. Then define xj(V1, . . . , Vn)[Ak/xik] or
xj !(V1, . . . , Vn)[Ak/xik] as Q[V ′k/xtk].”

The type of the constant propositional function Q being substituted for
xj in P is the image under the fixed substitution σ of the type of xj in
P , and so is the image under σ of a proper component of the type of
P . Thus, by a structural induction on types, the substitution Q[V ′k/xtk])
into Q used to define the substitution into P succeeds, because the image
under σ of the type of Q is simpler than the image under σ of the type of
P . Note that because P is well-typed, that substitution Q[V ′k/xtk]) will
meet the typing conditions we require for substitutions: the fact that Q
has the same type that xj has in P , each V ′k has the same type as Vk in
P , and xj(V1, . . . , Vn) is a subterm of P is sufficient to see this.

So the problem of substitution is solved by the adoption of simple type
theory.

6 The Ramified Theory

The motivation behind the ramified theory is as follows. The type of a proposi-
tional function in STT is determined by the types of its arguments, and all types
of its arguments must be simpler than its type: understanding the meaning of
the pf involves understanding the entire range of the types of its arguments, so
it cannot without circularity be an item in one of those types. But it can fur-
ther be said that understanding the meaning of a pf involves understanding the
entire type over which any quantified variable appearing in the function ranges,
so the type of a pf must be more complex than that of any variable over which
quantification occurs in the pf. More concretely, Russell suggests in PM that a
quantified sentence is to be understood as expressing an infinitary conjunction
or disjunction in which sentences referring to every object of the type quantified
over must occur. If quantified sentences are to be interpreted in this way, then
the appearance of a quantified variable in a pf with the same type as the pf or
a more complex type would lead to formal circularity on expansion to infinitary
form.

The restriction is enforced in RTT by adding to each type a new feature,
a non-negative integer called its “order”. The order of type 0 (the type of
individuals) is 0 (zero). The type () of propositions in simple type theory is
partitioned into types ()n for each natural number n, where the order n will
be the least natural number greater than the order of the type of any variable
which occurs in the proposition (including quantified variables). A pf notation
P containing n free variables xik (listed in increasing order) with types tk will
be assigned type (t1, . . . , tn)m, where m is the smallest natural number greater
than the order of any of the types tk and the order of the type of any variable
quantified in P . A similar rule applies to the typing of head variables xi in

15

expressions xi(A1, . . . , An) or xi!(A1, . . . , An): the type of xi will be (t1, . . . , tn)r

where each tk is the type of Ak, and the order r is larger than the orders of the
tk’s; in the term xi!(A1, . . . , An), the order r must be the smallest order larger
than all orders of tk’s.

We begin the formal treatment with the definition of formal polymorphic
orders.

natural number: A natural number n is a polymorphic order.

polymorphic variable: For each variable xi, the symbol |xi| is a polymorphic
order.

addition: The formal sum of a polymorphic order and a natural number is a
polymorphic order.

maximum: The formal maximum of two polymorphic orders is a polymorphic
order.

simplification: Addition is understood to be commutative and associative.
Each sum appearing in a polymorphic order is of the form |xi| + m: two
polymorphic variables are never added, so there is no need for more com-
plex sums.

Maximum is understood to be commutative and associative. The identity
max(a, b) + c = max(a+ c, b+ c) can be used to convert any polymorphic
order to a maximum of sums. No more than one natural number not
added to a polymorphic order needs to appear in such a maximum of sums
(because max(m,n) can be simplified to either m or n). No more than one
sum involving the same |xi| needs to appear, since max(|xi|+m, |xi|+n) =
|xi| + max(m,n). So there is a unique canonical form for polymorphic
orders, the maximum of a single natural number (if the natural number is
0 it is omitted) and a list of expressions |xi|+m (if m is 0 it is omitted)
presented in ascending order of the parameter i. Adding a natural number
to such a standard form and taking the maximum of two such standard
forms are readily computable operations.

order of polymorphic orders: If m and n are polymorphic types, we say
m > n when max(m,n+ 1) = m. This is not a total order, of course.

substitution into orders: The result u[m/|xi|] of substituting a polymorphic
order m for the polymorphic order |xi| in a polymorphic order u is the
result of replacing the occurrence of |xi| in u (if there is one: otherwise
the result of the substitution is u) with m, then simplifying.

Substitution into orders is needed to handle changes in order which take
place when a more detailed type is substituted for a polymorphic type
variable.

Now we are in a position to define ramified types (and their orders, simul-
taneously).

16

individuals: 0 is a ramified type of order 0.

propositions: If n is a polymorphic order, ()n is a ramified type of order n.

propositional functions: If t1, . . . , tn are ramified types and m is a polymor-
phic order greater than the order of any of the types tk, then (t1, . . . , tn)m

is a ramified type of order m.

polymorphic types: For each variable xi, there is a ramified type [xi] of order
|xi|.

There are two possible ways of understanding the relationships between the
orders. Explicit assertions in PM support the idea that any two types must
be disjoint, and so two types (t1, . . . , tn)r and (t1, . . . , tn)s with r 6= s must be
disjoint. This is the view we take here. There is a possible alternative approach,
taken up by other workers (see [6]), that (t1, . . . , tn)r ⊆ (t1, . . . , tn)s holds when
r < s. We do not take this view, but we found consideration of this alternative
view very useful in constructing early versions of the type inference algorithm
for RTT .

We present the rules for a term-typing function τ as above. Notice that
here the orders will be fixed non-negative integers: polymorphic orders appear
in our algorithm because the structure of terms gives insufficient information to
fix orders precisely in some cases.

individuals: If xi appears as an argument in an atomic proposition, τ(xi) = 0.
τ(ai) = 0 for any individual constant ai.

propositional functions: If P is a propositional function and the n free vari-
ables of P , indexed in increasing order, are xik , τ(P) = (τ(xi1), . . . , τ(xin))m,
where m is one greater than the maximum of the orders of the types of
the variables appearing in P (free or bound, outside proper propositional
function arguments). If P contains no free variables, then τ(P) = ()m,
where m is one greater than the maximum of the orders of the types of
the variables quantified over in P .

variable application: If xj !(A1, . . . , An) is a term, then τ(xj) = (τ(A1), . . . , τ(An))m,
where m is one plus the maximum of the orders of the types of the Ai’s.
If xj(A1, . . . , An) is a term, then τ(xj) = (τ(A1), . . . , τ(An))m, for some
order m strictly larger than the order of each τ(Ak).

Notice that in the ramified theory there is an additional case where the type
of a variable cannot be rigidly deduced from its context: as before, the type of
a variable argument to a variable propositional function is polymorphic, and in
addition the order of the type of xj in a term xj(A1, . . . , An) only has a lower
bound, not a fixed value.

As above, we will regard a pf as well-typed when there is a type function
τ which assigns a type to that pf. Some pfs will have many possible types, as
above, which will be indicated by the appearance of type variables [xi] (and order

17

variables |xi|) in the type resulting from the algorithm. As above, a more liberal
type algorithm could be obtained by requiring that bound variables be renamed
to be distinct from one another and from free variables when this preserves
meaning, but this is not implemented in our software. There is a tool which will
rename all bound variables in such a way that they are typographically distinct
whenever possible; this can be applied before typing to get the most general
typing conditions for a pf.

We now describe the rules of type inference for RTT . We include only those
clauses which differ from the corresponding clauses in the STT algorithm.

applied variables: If Ai has type ti for each i, and the order of tk is ok for
each k, then xj has type (t1, . . . , tn)r in xj !(A1, . . . , Ak), where r = 1 +
max(o1, ..., ok), and xj has type (t1, . . . , tn)s in xj(A1, . . . , Ak), where s =
max(|xj |, o1 + 1, . . . , on + 1). (In RTT , we distinguish the two kinds of pf
application term).

Definition: We assign an integer arity to each type which is not a type variable.
0 has arity −1. () has arity 0. (t1, . . . , tn)m has arity n. Note that a type
may have variable type components, but it will still have arity if it is not
itself a type variable. Note also that types which are equal will have equal
arity if their arity is defined. (We reproduce this definition because of the
mention of order, though order does not affect arity).

componentwise equality (identification of components): If (t1, . . . , tn)m1 =
(u1, . . . , un)m2 in P , then ti = ui in P for each i.

It is important to note that substitution of a type t for a type variable [xi]
also has the effect of substituting the order of t for all occurrences of the order
variable |xi|.

ill-foundedness: If xi has type t in P and t[t/[xi]] 6= t, then P is ill-typed.
(Recall that the computation of t[t/[xi]] includes the reduction of its order
to standard form; this resolves the apparent circularity of the case in our
algorithm where we assign a variable xi a type t whose order is a maximum
of orders including |xi|; in t[t/[xi]], the order of t is apparently modified
by the replacement of |xi| with the entire order of t, but on simplification
the order of t is restored to its original form, so in fact t[t/[xi]] = t in this
case and no judgment of ill-typedness results)

As above, we need the rule for typing propositional functions. This rule
needs to take into account the effect of quantified variables on order.

propositional function type: If the variables free in P , listed in order of
increasing index, are (xi1 , . . . , xin), and the variables quantified in P are
(xin+1

, . . . , xim), xik has type tk for each k and type tk has order ok for
each k, then P has type (t1, . . . , tn)r, where r = 1 + max(o1, . . . , om).

We need the following rule and we do not subsequently relax it as in simple
type theory.

18

types from arguments: If xi has type t inAk, then xi has type t in xj(A1, . . . , An)
and xj !(A1, . . . , An).

It should be clear from our discussion that each of these rules is sound for
the intended interpretation. However, this set of rules is not complete.

We now introduce the notion of “bounding variable” of an order.

Definition: If an order n is presented in the standard form max(n0, n1 +
|xi1 |, . . . , nk + |xik |), and some nj with (j 6= 0) is equal to 0, then xij
is said to be a “bounding variable” of n.

It is important to observe that the only orders deduced by any of our rules
which can have bounding variables are the polymorphic orders |xi| themselves
and the orders assigned to xj in terms xj(A1, . . . , An), which have bounding
variable |xj |. Any other polymorphic order that we assign is the successor 1 +n
of some order n, and it is clear that no successor order can have a bounding
variable.

Further, the following rule clearly holds for types assigned by our algorithm:

bounding variables: If xi has type t in P and the order of t has bounding
variable xj , then xj has type t in P .

The reason for this is that any rule which assigns a type with bounding
variable xj in the first instance actually assigns this type to the variable xj .
Further, this implies that we can assume that any type with a bounding variable
has only one bounding variable.

We present an incomplete but often successful algorithm for computation of
the type of a proposition or propositional function P in RTT . This algorithm
follows the STT algorithm very closely.

Provisional algorithm: We describe the computation of the type t. The idea,
as in the STT algorithm, is to construct a set of judgments “xi has type ti”
deducible using the type judgment rules which satisfies all the rules for a
type function except that types may have variable components: arbitrary
instantiation of the type variables then yields a true type function.

Begin the construction of the set of judgments by computing the “local”
type of each occurrence of each variable xi. The algorithm is recursive in
the same way as the STT algorithm: we assume that each pf argument of
pf application terms has been successfully assigned a type.

As in the STT algorithm, what remains is to unify distinct types assigned
to the same variables (or show that they cannot be unified).

If any variable is assigned types of different arities or if any variable xi
is assigned a type which contains [xi] as a proper component, the process
terminates with the judgment that P is ill-typed. Note that if xi is as-
signed a type with bounding variable |xi|, this does not lead to forbidden
circularity: the only occurrence of [xi] in the type assigned to xi is the

19

occurrence of |xi| in its order. Substitution of the type t of xi for [xi] in
t has the effect of replacing |xi| with the order of t in the order of t, and
after simplification the order is left the same. Order variables can lead to
fatal circularity, though: if xi is assigned a type t with an order which is a
maximum of orders one of which is |xi|+ r, with r 6= 0, then t[t/[xi]] 6= t
and we can conclude that P is ill-typed.

If xi is assigned any type t which is not a variable type (including com-
posite types with variable components) replace all occurrences of [xi] in
types assigned to other variables with the type t. Note that this does not
necessarily eliminate all occurrences of xi: if the type of xi has bound-
ing variable xi, occurrences of |xi| will remain. If xi is assigned type [xj]
(j 6= i), proceed as in the STT algorithm.

Notice that such substitutions will usually occur at most once for any
given variable xi, since the target type is usually eliminated everywhere.
Of course, if [xi] is introduced as a proper component of the type of xi,
terminate with a judgment of ill-typedness. The exception in which the
variable xi is assigned a type with bounding variable xi remains to be
considered. Notice that as soon as a variable is assigned any type which
does not have a bounding variable, any type which that variable may have
been assigned which had a bounding variable will be converted to a form
which does not have a bounding variable.

If xi is assigned types [xj] and t in P , add the judgment “xj has type t
in P” and eliminate the type assignment “xi has type [xj] in P”, except
in two special situations which follow. Note that all occurrences of [xj]
will then be eliminated if t is not a type variable and does not have order
with bounding variable xj . In these special cases where [xj] would not
be eliminated we proceed differently: if xi is assigned types [xj] and [xk],
we assign xi, xj , and xk the type xmax{i,j,k}. If the type t has bounding
variable xj , it must be the case that the judgment “xj has type t in P”
has already been made. In this case we define t′ as t[[xmax{i,j}]/xj] and
assign this type to both xi and xj , replacing all occurrences of [xi] and
[xj] in all type judgments with [xmax{i,j}].

If xi is assigned types (t1, . . . , tn)m1 and (u1, . . . , un)m2 in P , the judg-
ments ti = ui follow for each relevant i. From these equality judgments
continue to deduce further equality judgments in the same way. This pro-
cess will terminate with either a judgment that P is ill-typed or a finite
nonempty set of nontrivial judgments of the form [xk] = vk, each of which
has “xk has type vk” as a consequence. Assign to xi the types which result
if all these types xk are replaced with the corresponding vk’s in each of the
two types being reconciled (the resulting types will not necessarily be the
same, because the orders may be different). Note that no new assignment
to xi can result, because [xi] cannot be a component of the type assigned
to xi unless P is ill-typed.

If xi is assigned types (t1, . . . , tn)m1 and (u1, . . . , un)m2 in P , or if xi

20

is assigned types ()m1 and ()m2 , the orders m1 and m2 should be the
same. In this algorithm, we only use this information if one or both
of the orders m1 or m2 has a bounding variable. If m1 has bounding
variable xj and m2 has no bounding variable, we make the additional
judgment “xj has type (u1, . . . , un)m2 in P” and replace all occurrences of
|xj | with m2 (any occurrences of [xj] as a type should already have been
eliminated). We proceed symmetrically if m2 has a bounding variable
and m1 has no bounding variable. If m1 and m2 have bounding variables
xj and xk respectively, we make the additional judgments “xj has type
(u1, . . . , un)m2 in P” and “xk has type (t1, . . . , tn)m1 in P”, then replace
all occurrences of |xj | and |xk| (there should be no frank occurences of
[xj] or [xk]) in type judgments with |xmax{j,k}|. Both of these maneuvers
are justified by the bounding variable rule.

This process must terminate. Each step of the process described eliminates
at least one variable type [xi] from consideration (along with all occur-
rences of its order |xi|) or terminates with a judgment of ill-typedness.

When the process terminates, we will either have concluded that P is ill-
typed (and this judgment will be honest because the rules are sound for
the intended interpretation) or we will have obtained a set of type assign-
ments to the variables appearing in P almost satisfying the conditions for
a type function: the difficulty is that the same variable may be assigned
distinct ramified types corresponding to the same simple type but hav-
ing typographically different orders. If each variable has been assigned
a unique type by the end of the process, then the algorithm succeeds in
defining a type function τ up to assignments of concrete type values to
type variables, as above.

This algorithm is still based on the quite standard approach of type uni-
fication implemented, for example, in the type checking of the computer
language ML (see [5]).

The algorithm above is sound but incomplete. If it yields a type, it will
always be a correct type, but there are propositions and pfs which cannot be
typed by this algorithm but which can be read as well-typed terms of RTT . In
practice, the algorithm is quite good; it is not easy to write a typable term of
RTT which it will not type (though we shall present some examples).

A complete algorithm requires unification of orders. This will depart from
the usual methods of type checking, because it will require reasoning about
numerical inequalities.

It might seem that we would need a new kind of type judgment to express
equations between polymorphic orders, but in fact “order equality judgments” of
the form “m = n in P”, where m and n are polymorphic orders, are equivalent to
type equality judgments “()m = ()n in P”. We will allow ourselves to abbreviate
type equality judgments as order equality judgments when this can cause no
confusion.

Obviously sound additional rules are

21

componentwise equality of composite types (order): If (t1, . . . , tn)m1 =
(u1, . . . , un)m2 in P , then ()m1 = ()m2 in P .

order substitution: If xi has type t in P and m is the order of t, and ()p = ()q

in P holds, then ()p[m/|xi|] = ()q[m/xi] in P holds.

We outline our basic approach to reasoning about order unification. An
order equality judgment in standard form will take the form max{n0, n1 +
|xi1 |, . . . , nk + |xik |} = max{m0,m1 + |xj1 |, . . . ,ml + |xjl |}. This is equiva-
lent to a disjunction of conditions, each of which asserts the equality of one of
the terms of the first maximum with one of the terms of the second maximum
along with the inequalities asserting that the two chosen terms are greater than
or equal to the other terms of the respective maxima from which they are taken.
If one or both of the orders has a bounding variable, the bounding variable is the
only possible maximum chosen (which simplifies the calculation in these cases
by reducing the number of cases).

All of the resulting statements can be expressed using assertions of the form
|xi| ≥ n, |xi| ≤ n, or |xi| − |xj | ≤ n, where n is an integer. Any equation or
inequality between terms of the forms n0 or nk + |xik | can be converted to a
conjunction of inequalities of the forms above by substracting an appropriate
quantity from each side of the equality or inequality and converting an equation
to the conjunction of two inequalities in the obvious way. Any assertion of the
form |xi| ≤ r where r < 0 (which will also be obtained (e.g.) from an equation
|xi| + m = |xi| + n where m 6= n) can be used to conclude that an entire
conjunction is false.

We now describe the computation of complete conditions for well-typedness
of a term from a number of order equality judgments. Convert each order
equality judgment to a disjunction of conjunctions of inequalities of the forms
described above. A conjunction of disjunctions of conjunctions is converted to
a disjunction of conjunctions in the obvious way.

Now each conjunction of inequalities is processed separately. Present all
inequalities in a uniform way by rewriting |xi| ≤ n, |xi| ≥ n as |xi| − 0 ≤
n, 0 − |xi| ≤ −n, respectively. Every inequality is then written in the form
A − B ≤ n. For each xi which appears, include 0 − |xi| ≤ 0, 0 − 0 ≤ 0 and
|xi| − |xi| ≤ 0 in the conjunction. Wherever A−B ≤ n1 and A−B ≤ n2 both
appear, retain just A−B ≤ min{n1, n2}. Wherever A−B ≤ m and B−C ≤ n
both appear, add A − C ≤ m + n to the conjunction. Apply these operations
repeatedly if necessary. If any conjunct of the form |xi| − 0 ≤ r with r < 0 or
|xi|− |xi| ≤ r with r < 0 appears, conclude that the conjunct is false. We claim
that this procedure will produce a canonical complete conjunction equivalent to
the conjunction we started with.

Lemma: Any conjunction of a set of inequalities of the form A−B ≤ n, where
A and B are either 0 or variables with natural number values, is converted
to a canonical equivalent form by the procedure described above.

Proof of Lemma: We will refer to items such as A and B above as “literals”

22

for the moment. In our application, literals are 0 and polymorphic orders
|xi| of variable types.

We claim first that inconsistency of the conjunction of a set of inequalities
is always detected by this procedure. Suppose we have a partial assign-
ment of values to literals (with 0 assigned the value 0) and we wish to
consider possible values of a literal A to which a value has not been as-
signed. The conditions of forms A − B ≤ n, C − A ≤ m for B and C
to which values have been assigned determine intervals in which the value
A can lie. Now intervals have the logically interesting property that any
set of intervals which intersect pairwise actually have nonempty intersec-
tion. If it is not possible to assign a value to A consistent with given
inequalities involving A and assignments of value, then there must be a
pair of intervals A − B ≤ n, C − A ≤ m for B and C to which values
have been assigned which do not intersect (as intervals of the same kind
obviously always intersect). The values assigned to B and C then cannot
satisfy C − B ≤ m + n, which is one of the equations added to the set
by our procedure, as well as being a logical consequence of the original
conjunction, so the values assigned to B and C were already inconsistent
with the conjunction of inequalities. This means that if a conjunction
of literals is actually satisfiable, then we can proceed by completing the
conjunction as above, and using the completed conjunction and the values
assigned previously to other literals to determine the possible values for
each literal; this will work regardless of the order in which the literals are
considered.

We claim further that two equivalent conjunctions will be expanded to
the same form by this procedure. This is easy: suppose one conjunction,
when expanded, contains B − 0 ≤ n0 and the other contains B − 0 ≤ n1

(n0 6= n1). It follows that the range of values which can be assigned to B
at the very first step of the process of assignments of values to literals is
different, so the original conjunctions cannot have been equivalent. Now
suppose that one conjunction, when expanded, contains B − A ≤ n0 and
the other contains B − A ≤ n1 (n0 6= n1). Now assign a value to A
(compatible with its bound relative to 0). The range of values possible
to assign to B (the bound on whose value relative to 0 being the same in
both expanded conjunctions) will be different for the two expanded forms,
which shows that the two expanded conjunctions cannot be equivalent, so
the original conjunctions were not equivalent.

Conjunctions can then be simplified by eliminating redundant conjuncts (a
conjunct is redundant if eliminating the conjunct then computing the canonical
form gives the same result as computing the canonical form of the original
conjunction).

Once each disjunct is computed, identical disjuncts or conjunctions weaker
than other disjuncts can be recognized and eliminated (by comparing canonical
forms) and a simplified form of the disjunction of conditions under which the

23

term is well-typed can be computed (or ill-typedness can be reported if all
conjuncts reduce to falsehood).

This can be applied to produce a complete algorithm: use the provisional
algorithm described above to generate a list of type assignments whose failures of
uniqueness are induced only by failures to unify order, then apply the procedure
described above to reduce the order equality judgments that are required to
arithmetic assertions about polymorphic orders. Note that under the resulting
conditions it is possible to select any of the types given for each variable or
propositional function as correct if the conditions are consistent, since all types
given for any one object will be equal under the conditions derived from the
unification of the orders.

A notable point about the algorithm is that the simplification of the arith-
metic conditions on polymorphic orders made possible by the use of canonical
forms for conjunctions combined with the elimination of redundant conjuncts
and disjuncts gives quite manageable output (earlier versions which computed
and displayed things more lazily gave unmanageably large displays which were
not useful in practice).

The reasoning above was informal arithmetical reasoning. It is useful to
observe that it can be coded into the language of order equality type judgments.
We do not do this in the software: the type inference algorithm just implements
the provisional algorithm described above while the inequalities are handled
by a dedicated representation of quite conventional reasoning about arithmetic
inequalities. So we feel no need to do more than sketch the way in which this
reasoning could be incorporated directly into the system of reasoning about
types. We use the language of order equality judgments, but recall that these
abbreviate special type equality judgments.

order inequality: A judgment “m ≤ n in P” is equivalent to “n = max{m,n}
in P”, and so requires no expansion of our language of type judgments.

type subtraction: The judgments we have found it convenient to write as
“A−B ≤ n in P” can be expressed formally as “A ≤ B + n in P”.

relations to zero: The judgments 0−m ≤ 0 and m−m ≤ 0 assumed for all
orders in the algorithm above expand to judgments automatically made
by the algorithm for simplifying polymorphic orders.

0−m ≤ 0 ≡ 0 ≤ 0 +m ≡ 0 ≤ m ≡ m = max{0,m}

m−m ≤ 0 ≡ m ≤ 0 +m ≡ m = max{m,m}

expansion of equations between maxima: “max{m,n} = p” implies “(n ≤
m and n = p) or (m ≤ n and m = p)”. Of course, this needs to be ap-
plied on both sides of the equals sign. It also requires us to expand our
language to allow the handling of cases: the distributivity of conjunction
over disjunction will also be needed if this is to be completely formalized.
Note that the special treatment of orders with bounding variables can be

24

justified using the type judgment rule for bounding variables given above
combined with order unification.

“triangle inequality” steps: The deduction from A−B ≤ m and B−C ≤ n
to A− C ≤ m+ n is justified as follows: we actually read A− B ≤ m as
A ≤ B+m: from A ≤ B+m and B ≤ C+n deduce A+B ≤ B+C+m+n,
and from this deduce A ≤ C+m+n using the rules “deduce m+p ≤ n+q
from m ≤ n and p ≤ q” and “deduce m ≤ n from m + p ≤ n + p”.
These rules doubtless can be “simplified” to corresponding rules about
equations, but the basic shape of the additional inference rules needed to
justify triangle inequality steps is clear.

absurdity: Judgments of the form m ≤ −r where r > 0 or m−m ≤ −r where
r > 0 signal absurdity: this is implemented by rules asserting that from
0 = m+ r or m = m+ r (where r > 0) in P we deduce that P is ill-typed.

7 Relations to Other Work

In this section we discuss the relationship of the development in this paper to the
development in [4]. We are not familiar with the details of any other attempt
to faithfully implement the theory of types of PM in modern terms: we are
familiar with some other treatments of the ramified theory of types, but they
seem to be more remote from the actual usage of PM .

The system of [4] uses a different (and more usual) kind of context than our
system. The form of a type judgment of the system of [4] is Γ |= f : t, where
f is a term, t is the type assigned to that term, and Γ is a finite function from
variables to types representing types assigned to variables in the context. In our
system, a type judgment about an entire term (propositional notation) has no
context, while type judgments about variables have as context the term in which
they appear. To make comparison easier, we reproduce in its entirety (though
certainly without full explanation) the recursive definition of type judgments
from [4]. We will refer back to this in the following section of examples.

Definition 40 (Ramified theory of types (RTT)), from [4]: The judgements
Γ ` f : ta are inductively defined as follows:

1. (start) For all a we have: ` a : 00.

For all atomic pfs f we have: ` f : ()0;

2. (connectives) Assume Γ ` f :(ta1
1 , . . . , tan

n)
a
, ∆ ` g:(ub11 , . . . , u

bm
m)

b
, and

x < y for all x ∈ dom(Γ) and y ∈ dom(∆). Then

Γ ∪∆ ` f ∨ g :
(
ta1
1 , . . . , tan

n , ub11 , . . . , u
bm
m

)max(a,b)

;

and
Γ ` ¬f : (ta1

1 , . . . , tan
n)

a
;

25

3. (abstraction from parameters) If Γ ` f : (ta1
1 , . . . , tam

m)
a
, t

am+1

m+1 is a
predicative type, g ∈ A ∪ P is a parameter of f , Γ ` g : t

am+1

m+1 , and x < y
for all x ∈ dom(Γ), then

Γ′ ` h : (ta1
1 , . . . , t

am+1

m+1)
max(a,am+1+1)

.

Here, h is a pf obtained by replacing all parameters g′ of f which are αΓ-
equal to g by y. Moreover, Γ′ is the subset of the context Γ ∪ {y : t

am+1

m+1 }
such that dom(Γ′) contains all and only those variables occurring in h;

4. (abstraction from pfs) If (ta1
1 , . . . , tam

m)a is a predicative type, Γ ` f :
(ta1

1 , . . . , tam
m)

a
, x < z for all x ∈ dom(Γ), and y1 < · · · < yn are the free

variables of f , then

Γ′ ` z(y1, . . . , yn) : (ta1
1 , . . . , tam

m , (ta1
1 , . . . , tam

m)
a
)
a+1

,

where Γ′ is the subset of Γ ∪ {z:(ta1
1 , . . . , tam

m)
a} such that dom(Γ′) =

{y1, . . . , yn, z};

5. (weakening) If Γ, ∆ are contexts, Γ ⊆ ∆, and Γ ` f : ta, then also
∆ ` f : ta;

6. (substitution) If y is the ith free variable in f (according to the order
on variables), and Γ ∪ {y : tai

i } ` f : (ta1
1 , . . . , tan

n)
a
, and Γ ` k : tai

i then

Γ′ ` f [y:=k] : (ta1
1 , . . . , t

ai−1

i−1 , t
ai+1

i+1 , . . . , t
an
n)

b
.

Here, b = 1 + max(a1, . . . , ai−1, ai+1, . . . , an, c),
and c = max{j | ∀x:tj occurs in f [y:=k]}
(if n = 1 and {j | ∀x:tj occurs in f [y:=k]} = ∅ then take b = 0) and once
more, Γ′ is the subset of Γ ∪ {y : tai

i } such that dom(Γ′) contains all and
only those variables occurring in f [y:=k];

7. (permutation) If y is the ith free variable in f (according to the order
on variables), and Γ ∪ {y:tai

i } ` f : (ta1
1 , . . . , tan

n)
a
, and x < y′ for all

x ∈ dom(Γ), then

Γ′ ` f [y:=y′] : (ta1
1 , . . . , t

ai−1

i−1 , t
ai+1

i+1 , . . . , t
an
n , tai

i)
a
.

Γ′ is the subset of Γ∪{y:tai
i , y

′:tai
i } such that domΓ′ contains all and only

those variables occurring in f [y:=y′];

8. (quantification) If y is the ith free variable in f (according to the order
on variables), and Γ ∪ {y:tai

i } ` f : (ta1
1 , . . . , tan

n)
a
, then

Γ ` ∀y:tai
i [f] : (ta1

1 , . . . , t
ai−1

i−1 , t
ai+1

i+1 , . . . , t
an
n)

a
.

26

There is a major notational difference between the propositional function
notation of [4] and our own (which can be seen in the definition of type judg-
ments just above). The authors of [4] attach type labels to quantified variables.
This is certainly not in the spirit of PM , where there is no notation for types at
all. It would be possible to modify their system to make this unnecessary, but
it would then be necessary to include type hypotheses for quantified variables
in the environment.

The authors of [4] are forced by the structure of their system into adopting a
much more complicated definition of substitution (by “substitution”, we mean
“substitution into propositional (or pf) notations” throughout this paragraph;
substitution into type notations is used in the definition of our system of type
judgments, but involves no logical difficulties). The difficulty is that some of
the rules of their system of type judgments are defined in terms of the notion of
substitution (as can be seen above), so substitution has to be defined prior to the
adoption of the type system. As a result, a complicated detour through lambda-
calculus is required to define the notion of substitution successfully, whereas in
our development we are able to correct the natural definition of substitution by
appealing to the (simple) theory of types, because we make no use of substitution
in our definition of type judgments. Once we have defined types, we are able to
use the natural definition of substitution, with the additional stipulation that
all terms involved have to be well-typed and substitutions for variables have to
reflect the inferred types of the variables.

Polymorphism is represented differently in the two systems. In the system
of [4], there are no polymorphic type judgements, but a term may be assigned
different types in different contexts. In our system, a single (but possibly poly-
morphic) type is always assigned to a term, whose structure is general enough
to indicate all possible types for the term. The side conditions on polymorphic
orders generated by the complete algorithm for RTT complicate this picture
somewhat.

The range of terms recognized as well-typed by our system is far larger than
that recognized by the system of [4], and apparently larger than that recognized
by PM !. The system of [4] only supports types all of whose component types
are predicative. Probably the modifications of the system required to lift this
restriction would not be extensive. On reading [4] originally, we thought this
was a weakness of their development, but in fact it seems to reflect the intentions
of the authors of PM : see p. 165, where they assert that all non-predicative
propositional functions are to be formed from predicative ones by generalization,
and that no bound variables of non-predicative type are needed. However, there
is a problem with this (also apparently recognized by the authors of PM in
an immediately following remark on p. 165): without variables of possibly
non-predicative type, one cannot express the axiom of reducibility in a typable
form. PM makes a special provision for this by introducing application of
function variables without assigned order on p. 165; we suppose that terms
with such variables in them would not define propositional functions for PM if
it was desired not to have types with impredicative components. The system
of PM can conveniently restrict impredicativity to the top level of types as

27

they do (while apparently forbidding quantification over impredicative types)
because the axiom of reducibility allows one to associate with each element of
an impredicative type with predicative components a coextensional element of
the predicative type with the same components, and one can quantify over this
type; in the absence of the axiom of reducibility, one would need to be able to
quantify over impredicative types directly in order to be able to say anything
about them, and this would mean that one could define propositional functions
with more complex types.

The system of [4] is more modern in appearance than ours; we do recognize
this as an advantage of that system. Our program of using propositional nota-
tions themselves as environments has at least one strange effect to go along with
its advantages. In the simple theory of types, it is reasonable to avoid assigning
types to bound variables (that is, to define the type algorithm in such a way as
to effectively rename bound variables as they are encountered, so that a bound
variable may have the same shape as a free variable or differently bound variable
of a different type elsewhere without causing a type conflict). However, without
a conventional environment the only way to associate a polymorphic type with
a variable seems to be to name the polymorphic type after the variable to which
it is assigned. This makes it impractical to attempt to rename variables bound
in arguments of propositional functions, which has odd effects on typing in the
simple theory of types which will be seen in the examples. In the ramified the-
ory, it seems to be best to type all variables which appear, free or bound (even
in [4], the authors remark that it is necessary to assign types to some bound
variables).

We believe that our system is better in certain ways than the system of [4].
The fact that our notation for propositional functions does not require type
indices is truer to the original system of PM . The fact that the definition of our
type inference system does not depend on the notion of substitution allows the
definition of substitution to be simpler and more natural in our formalization.
We believe that our system lends itself better to mechanical implementation,
but this is perhaps unfair since the system described here was reverse-engineered
from a mechanical implementation (though it should be noted that the formal
system was reverse-engineered from an early version of the program which didn’t
work very well, and improvements in the formalization then drove improvements
in the program). It would be interesting to see whether and how well the system
of [4] lends itself to automation. The system of [4] handles bound variables in a
way a little more in accord with modern tastes than ours does. The system of [4]
is more faithful to PM in limiting types to those with predicative components,
but we feel that any serious attempt to work in RTT without reducibility would
require the lifting of this restriction.

The simple theory of types is of course very similar to quite standard type
systems except for its lack of head binders in function notation, and the type
inference algorithm for this system is recognizably of a standard kind, except
for the adaptations to the head-binder-free notation for functions. The ramified
theory of types is very eccentric as a type system, and the complete algorithm
we exhibit for it is unusual in its need to reason about arithmetic in order to

28

manage order unification. From the standpoint of modern theories of types, the
orders of RTT are peculiar union types, in which quite heterogeneous kinds of
thing are conglomerated together.

8 Examples

True to the historical origins of this paper, we will begin by presenting some
examples from [4]. Some features of the output of our software are suppressed.

We are running the RTT checker, but in many cases this will not be obvious,
as our system does not display order superscripts on types unless the order is
more than one greater than the maximum order of the component types.

Term input:

S2(a1,a2)

final type list:

unconditional type:

()

Just as in example 49, clause 1, of [4], the propositional notation S(a1, a2)
(the computer requires a suffix on the predicate indicating its arity) is recognized
as a proposition because it contains no free variables.

Term input:

(R1(x1) v S1(x1))

final type list:

x1: 0

unconditional type:

(0)

This is parallel to the second example in clause 2 in example 49; our usage
of suffixes on predicates to indicate arity forbade reproducing the form R1(x1)∨
R2(x1) of the original.

Term input:

(R1(x1) v S1(x2))

final type list:

x1: 0

x2: 0

unconditional type:

(0,0)

In this example, we have two distinct free variables, so we get a pf with two
arguments (both of type 0).

The treatment of the terms of the last two examples in the system of this
paper is much the same. In both terms, the list of free variables is generated,
then each free variable is typed using local rules, and the types of the free

29

variables are listed to form the type of the propositional function. But the
treatment of the last two examples is quite different in the system of [4], for
reasons best discovered by examining derivations in the style of that paper
which we now exhibit (there are inessential differences between the notations
used in the two systems for the pfs involved). The rule numbers refer back to
definition 40 of [4], which is reproduced in the previous section of this paper.
The derivations under the heading 1 are taken from [4], example 49, while we
set up the derivation under heading 2 ourselves for comparison.

1.
` R1(a1) : () ` R2(a1) : ()

` R1(a1) ∨ R2(a1) : ()
rule 2

but not :

x1 : 0 ` R1(x1) : (0) x1 : 0 ` R2(x1) : (0)

x1 : 0 ` R1(x1) ∨ R2(x1) : (0, 0)
rule 2

(x1 6< x1 because < is strict). To obtain R1(x1) ∨ R2(x1) we must make a
different start:

` R1(a1) : () ` R2(a1) : ()

` R1(a1) ∨ R2(a1) : ()
rule 2 ` a1 : 0

x1 : 0 ` R1(x1) ∨ R2(x1) : (0)
rule 3;

` R1(a1) : () ` R2(a1) : ()

` R1(a1) ∨ R2(a1) : ()
rule 2 ` a1 : 0

x1 : 0 ` R1(x1) ∨ R2(x1) : (0)
rule 3;

2.

` R1(a1) : () ` a1 : 0

x1 : 0 ` R1(x1) : (0)
r. 3

` R2(a1) : () ` a1 : 0

x2 : 0 ` R2(x2) : (0)
r. 3

x1 : 0, x2 : 0 ` R1(x1) ∨ R2(x2) : (0, 0)
r. 2

The application of rule 2 here is correct because x1 < x2.

In the system of [4], the term R1(x1) ∨ R2(x1) is typed by first considering
the typing of R1(a1) ∨ R2(a1), which is immediately seen to have type (), and
in which the term a1 has type 0, then using the rule for typing substitutions to
insert a new component with type 0 into the type () of R1(a1) ∨ R2(a1) (the
new component correlates with the new variable which replaces a1) to obtain the
type (0). The term R1(x1)∨R2(x2) is typed by observing that the two disjuncts
have the property that all variables of the first are alphabetically prior to the
variables of the second, typing the first and the second as (0) in the same way
we typed the previous term, then concluding that the type of the whole is the
“product” (0, 0) of two copies of (0) (speaking somewhat loosely). This example
should make clear the quite different flavors of the two approaches.

30

Term input:

(x2(a1) v S1(a1))

final type list:

x2: (0)^max(|x2|,1)

unconditional type:

((0)^max(|x2|,1))

This is the first example given in example 49 in [4]. Our system tells us that
the function x2 (called z in the original) can have a type of any order with sole
component 0: the order |x2| of this type will be at least 1, which is expressed
by writing it as the maximum of 1 and |x2| (this is an order with a bounding
variable).

Term input:

[x1](x1() v ~x1())

final type list:

x1: ()^max(|x1|,0)

unconditional type:

()^max(|x1|+1,1)

This is example 51 from [4]. Order is important in this example. Note that
the variable x1 represents a proposition (a 0-ary propositional function); the
order of its type is 0. The entire term is also a proposition (it contains no
free variables, because x1 is bound by the quantifier) but its order is at least
1, because it must be greater than the order of the quantified variable. As in
the previous example, there is no upper bound on the possible order of the
type here. This can be changed, though, using the “predicativity” qualifier of
propositional function application:

Term input:

[x1](x1!() v ~x1!())

final type list:

x1: ()

unconditional type:

()^1

Now we know that the order of x1 is 0 (since it is the smallest possible order
it is not displayed) and the order of the type of the whole term is seen to be
exactly 1.

We have yet to see an explicit polymorphic type. This can be remedied by
considering the term in Remark 58 of [4].

Term input:

x2(x1)

final type list:

x1: [x1]

x2: ([x1])^max(|x1|+1,|x2|,1)

unconditional type:

([x1],([x1])^max(|x1|+1,|x2|,1))

31

In this term, x1 is of a completely unknown type [x1], while x2 is seen to be
of type ([x1]) (it is a predicate of objects of type [x1]), so the whole term is of
type ([x1], ([x1])), in which the order of the components is determined by the
fact that x1 is alphabetically prior to x2. The order index on the type ([x1])
of x2 appears because we have no order restriction on x2. We get a prettier
display if we change to predicative application:

Term input:

x2!(x1)

final type list:

x1: [x1]

x2: ([x1])

unconditional type:

([x1],([x1]))

In [4], this is also an example of polymorphism (the pf is written z(x) instead
of our x2(x1)): two different derivations are given, each yielding a different type,

` R(a1) : () ` a1 : 0

x : 0 ` R(x) : (0)
rule 3

x : 0, z : (0) ` z(x) : (0, (0))
rule 4

versus
` R(a1) : ()

x : () ` x() : (())
rule 4

x : (), z : (()) ` z(x) : ((), (()))
rule 4,

whereas in our system we get a single computation showing us what all types
look like.

If we supply more information in the context (the context can only be ma-
nipulated in our system by embedding the term to be typed in a larger term),
the polymorphic type will become more specific:

Term input:

(x2!(x1) v S1(x1))

final type list:

x1: 0

x2: (0)

unconditional type:

(0,(0))

Here we know from additional local information in the term that the type
of x1 is 0, so we get a more specific type for the whole propositional function.

Here we give more complete output for a larger example term. The exam-
ple propositional function is adapted from the definition of a real number as a
Dedekind cut in example 71 in [4]. Predicative propositional function applica-
tion has been used throughout to simplify the display.

32

Term input:

((([Ex2]x1!(x2) and [Ex2]~x1!(x2))

and [x2][x3](x1!(x3) implies (L2(x3,x2) implies x1!(x2))))

and [x2](x1!(x2) implies [Ex3](x1!(x3) and L2(x2,x3))))

basic list:

x1: ([x2])

x1: [x1]

x1: ([x3])

x2: [x2]

x2: 0

x3: 0

x3: [x3]

unification list:

x~2: [x~1]

x~2: ([x2])

x~2: ([x3])

x~1: ([x3])

x~1: ([x2])

x~1: [x~2]

x1: ([x3])

x1: ([x2])

x1: [x1]

x2: 0

x2: [x2]

x2: [x3]

x3: [x3]

x3: [x2]

x3: 0

final type list:

x~2: (0)

x~1: (0)

x1: (0)

x2: 0

x3: 0

unconditional type:

((0))

The additional displays shown here (suppressed in previous examples) give
some hint at the internal processes of the type algorithm. The “basic list” con-
tains the local information about types of variables. The “unification list” con-
tains information derived by unifying types pairwise. The final list is obtained
by the process of eliminating superfluous type variables by global substitutions.
The additional variables x−1 and x−2 are used as “placeholders” internally by
the algorithm (in its internal representation of type equality judgments). The
type obtained is the same as the type ((00)1)2) claimed for this propositional
function in [4]: recall that minimal order indices are not displayed.

33

We give an example of the curious type phenomena which can result from
identifications of variables with bound variables in propositional function argu-
ments which happen to be used in the names of polymorphic types.

- test "x1(x3(x2))";

final type list:

x1: (([x2],([x2])))

((([x2],([x2]))))

The format is different because we are here using the STT type algorithm.
The final line is the type of the term. x1(x3(x2)) contains one free variable x1,
which is a function taking one argument of the type of x3(x2); x3(x2) is itself
a function of two arguments, x2, whose type is [x2] (ambiguous) and x3, whose
type is ([x2]), since it takes one argument of type [x2]. The type of x3(x2) is
thus ([x2], ([x2])) (recall that arguments are supplied to a propositional function
in alphabetical order of the free variables representing them), the type of x1 is
(([x2], ([x2])))and the type of x1(x3(x2)) is ((([x2], ([x2])))).

The term x1(x2(x1)) apparently has exactly the same meaning, since x2(x1)
is the same object as x3(x2), but the result of typing this term is quite different.

- test "x1(x2(x1))";

basic list:

x1: (([x1],([x1])))

unification list:

x1: (([x1],([x1])))

final type list:

x1: !?!

!?!

This fails to type. The difficulty is that the types of the two occurrences of
x1 are forced to be the same, and this results in circularity.

In other cases this is harmless in our implementation of STT :

- test "x1(x1(x2))";

final type list:

x1: ((([x2]),[x2]))

(((([x2]),[x2])))

There is no problem here because, although the types of the two occurrences
of x1 are incompatible, all information about the type of x1 is discarded when the
typing of the argument x1(x2) is finished, since it is not used in the polymorphic
type of this term. But the RTT algorithm will not accept this:

34

Term input:

x1!(x1!(x2))

basic list:

x1: ((([x2]),[x2]))

x1: [x1]

x1: ([x2])

x2: [x2]

unification list:

x~2: [x~1]

x~2: ([x2])

x~2: ((([x2]),[x2]))

x~1: ((([x2]),[x2]))

x~1: ([x2])

x~1: [x~2]

x1: ((([x2]),[x2]))

x1: ([x2])

x1: [x1]

x2: (([x2]),[x2])

x2: [x2]

final type list:

x~2: ?!?

x~1: ?!?

x1: ?!?

x2: ?!?

unconditional type:

?!?

Here type information from the propositional function argument is preserved,
and it is noticed that x1 needs to be assigned type (x2) and type ((([x2]), [x2])),
which are incompatible.

We now give some examples of the application of the complete type algorithm
for RTT .

Term input:

(x1(x2,x2) v x1([x3]x3(x4),[x5][x7]x7(x5,x6)))

unconditional type:

?!?

conditional type:

((([x6])^max(|x3|+1,|x6|+2,2),

([x6])^max(|x5|+2,

|x6|+2,|x7|+1,2))^max(|x1|,|x3|+2,|x5|+3,|x6|+3,|x7|+2,3),

([x6])^max(|x3|+1,|x6|+2,2))

WITH

|x3| <= |x7| and

|x5|+1 <= |x7| and

|x6|+1 <= |x7| and

35

|x7|+2 <= |x1| and

|x7| <= |x3|

The complete checker tells us that this propositional function does not type
under the provisional algorithm (under the heading “unconditional type”), then
gives a type and a set of conditions on polymorphic orders under which this
propositional function is well-typed in RTT .

Here is another example in which there are two different conditions under
which the given propositional function is well-typed.

Term input:

(x1!(x2,x2) v x1!([x3][x5]x3!(x5,x8),[x6][x9]x6!(x4,x9)))

unconditional type:

?!?

conditional type:

((([x8])^max(|x5|+2,

|x8|+2,2),([x8])^max(|x8|+2,|x9|+2,2)),

([x8])^max(|x5|+2,|x8|+2,2))

WITH

|x5| <= |x9| and

|x8| <= |x9| and

|x9| <= |x5|

OR

|x5| <= |x8| and

|x9| <= |x8|

We will attempt to talk our way through the typing of the second example.
In more standard notation, the propositional function is

x1!(x2, x2) ∨ x1!((∀x3.(∀x5.x3(x5, x8))), (∀x6.(∀x9.(x6!(x4, x9)))))

The entire term is a propositional function of the arguments x1 and x2; it
is necessary to figure out what the types of x1 and x2 are. Because of the
presence of the subterm x1!(x2, x2), we know that the two arguments of any
occurrence of x1 must be of the same type. So the propositional functions
(∀x3.(∀x5.x3(x5, x8))) and (∀x6.(∀x9.(x6!(x4, x9))) are of the same type. Each
of these is a function of one variable, x8 in one case and x4 in the other, so x4

and x8 are of the same type. This base type is polymorphic: we know nothing
about it.

Now we need to analyze orders. The order of the type of (∀x3.(∀x5.x3(x5, x8)))
is two greater than the maximum of the orders of [x5] and [x8]. The increment
of two is because x3 has type one greater than this maximum, and the order
is raised one more because of the quantifier over the type of x3. Similarly, the
order of the type of (∀x6.(∀x9.(x6!(x4, x9))) is two greater than the maximum
of the order of [x4] = [x8] and the order of [x9]. These two orders have to be the
same. There are two ways for this to happen: either the order of [x5] is greater
than the order of [x8], in which case the order of [x9] also has to be greater

36

than the order of [x8] and actually must be the same as the order of [x5], or
the order of [x8] is greater than or equal to the orders of [x5] and [x9] (which
in this case need not be the same). And these two cases are what the output
above describes.

The type of x1 will be ([x2], [x2]); the type of x2 will be (x8). So the under-
lying simple type of this expression is ((([x8]), ([x8])), ([x8])), and this is what
we see above, adorned with appropriate orders.

9 Applications to Proof Checking

We briefly discuss the application of the typing software in the development of a
proof checker for the system of PM , as expressed in our version of the notation
of [4].

Details of the proof checker itself are not especially relevant at this point
(we are attempting to follow the rules of inference in PM closely). But there
are a couple of observations worth making.

One never has any occasion to see a type index in the course of using the
proof checker. This is appropriate, since PM does not even have notation for
types, so we never see such notation in PM ’s theorems or proofs.

The type checker is used ubiquitously as part of the process of checking
well-formedness of propositions and propositional functions. This is natural.

There is one place in the logic where the type checker plays an important
and perhaps not entirely obvious role. This is in the implementation of the
rule of modus ponens. When one deduces a proposition Q from premises P and
P → Q, there is a subtle fallacy which can occur, and which use of the type
checker enables one to avoid.

All propositions of PM (and so all theorems of the nascent proof checker)
are to be understood in the most general possible way: they are to be true for
all possible values of their free variables under all possible assignments of type.
The difficulty is that the form of the proposition P → Q may give more type
information than Q (and also more than P , but this is harmless). So if the
modus ponens rule were implemented in a naive way, it might be possible to
deduce a proposition Q which is true for all type assignments to Q which render
P → Q well-typed, but not for some other type assignments for Q. So the proof
checker needs to check that the type checking of P → Q gives the same type
information about Q that the type-checking of Q alone gives.

We make the following conjectures, which we plan to discuss in a later paper
where we will have more to say about the proof checker.

If types constructed from the type of propositions are admitted, the use of
the naive form of modus ponens will lead to paradox. The reason for this is
that under reasonable assumptions the type of propositions, for example, has
only two elements, so one could prove an assertion like (∃ab.∀x.x = a ∨ x = b)
using hypotheses from which one could infer that x was a proposition, but
produce the conclusion in systematically ambiguous form. This conclusion leads
to contradiction because one can prove that some other types (also constructible

37

from the type of propositions) have more than two elements: for example, ((), ())
has four elements.

On the other hand, if types constructed from the type of propositions are
not permitted (() can occur only as the type of a proposition, not as the type
of a propositional function) then we believe that use of the naive rule of modus
ponens does not lead to contradiction, though it leads to unexpected results,
such as the ability to prove the “axiom of infinity” in pure logic. The reason for
this has to do with the relationship between the ramified theory of types and
the set theory NFP defined by Marcel Crabbé in [1], which is the predicative
version of Quine’s “New Foundations”. I have shown elsewhere (in [2]) that
NFP is mutually interpretable with the ramified theory of types with the axiom
of infinity. Though there are some details to check, we believe that it is possible
to construct a model of the ramified theory of types, using its relationship with
NFP , in such a way that all the types are isomorphic in a suitable sense, so that if
Q is a theorem for any assignment of types to its variables, it is a theorem for all
assignments of types to its variables, which is a sufficient condition for the naive
rule of modus ponens to be valid. If the type of propositions is permitted as a
component, then it is possible to construct types of distinct finite cardinalities,
which cannot be isomorphic with one another, so it is necessary to forbid the
use of the type of propositions as a component type if one wishes to exploit this
(presumed) result.

References
[1] Crabbé, M. “On the consistency of an impredicative subsystem of Quine’s NF”. Journal

of Symbolic Logic 47 (1982), pp. 131-136.

[2] Holmes, M. Randall, “Subsystems of Quine’s “New Foundations” with Predicativity Re-
strictions”, Notre Dame Journal of Formal Logic, vol. 40, no. 2 (spring 1999), pp. 183-
196.

[3] Holmes, M. Randall, software files (in standard ML) rtt.sml (source
for the type checker) and rttdemo.sml (demonstration file), accessible at
http://math.boisestate.edu/∼holmes/holmes/rttcover.html.

[4] Kamareddine, F., Nederpelt, T., and Laan, R., “Types in mathematics and logic before
1940”, Bulletin of Symbolic Logic, vol. 8, no. 2, June 2002.

[5] Milner, R., “A theory of type polymorphism in programming”, J. Comp. Sys. Sci., 17
(1978), pp. 348-375.

[6] Peressini, Anthony F., “Cumulative versus noncumulative ramified types”, Notre Dame
Journal of Formal Logic, vol. 38, no. 3, summer 1997.

[7] Whitehead, Alfred N. and Russell, Bertrand, Principia Mathematica (to *56), Cambridge
University Press, 1967.

38

