
Polymorphic type checking for the type theory of

the Principia Mathematica of Russell and

Whitehead

M. Randall Holmes

November, 2011

This is a brief report on results reported at length in our paper [2], made
for the purpose of a presentation at the workshop to be held in November 2011
in Cambridge on the Principia Mathematica of Russell and Whitehead ([?],
hereinafter referred to briefly as PM ).

That paper grew out of a reading of the paper [3] of Kamareddine, Nederpelt,
and Laan. We refereed this paper and found it useful for checking their examples
to write our own independent computer type-checker for the type system of PM
([1]), which led us to think carefully about formalization of the language and
the type system of PM

A modern mathematical logician reading PM finds that it is not completely
formalized in a modern sense. The type theory in particular is inarguably not
formalized, as no notation for types is given at all! In PM itself, the only type
annotations which appear are occasional numerical indices indicating order; the
type notation we use here extends one introduced later by Ramsey. The authors
of PM regard the absence of explicit indications of type as a virtue of their
system: they call it “systematic ambiguity”; modern computer scientists refer
to this as “polymorphism”.

The language of PM is also not completely formalized, and it is typograph-
ically inconvenient for computer software to which ASCII input is to be given.
The notation of PM for abstractions (propositional functions) does not use head
binders; the order of the arguments of a complex expression is determined by
the alphabetical order of the bound variables. For example â < b̂ is the “less
than” relation while b̂ < â is the “greater than” relation (this is indicated by
the alphabetical order of the variables). In PM , the fact that a variable is
bound in a propositional function is indicated by circumflexing it. Variables
bound by quantifiers are not circumflexed. A feature of the notation of [3], car-
ried over into ours, is that no circumflexes are used: notations for propositions
and the corresponding propositional functions are identical. This turns out to
work reasonably well, as propositions usually do not occur as components of
other propositions in the contexts where propositional functions do. A further
apparent notational limitation which is also true to the usage of PM is that

1



a composite term never appears in applied position: terms x1(a1, R1(x2)) in
which a propositional function represented by a variable is applied to a list of
arguments do appear, but any attempt to replace x1 here with a specific propo-
sitional function (for example x4(x3)) would force the actual substitution of the
arguments of x1 into the propositional function replacing it: the result in this
case would be R1(a1), which the reader may work out. (R1 is a unary relation
constant in this example.)

The logical world of PM is inhabited by individuals and propositional func-
tions (pfs). We provide constants ai to represent individuals. We provide gen-
eral variables xi to represent objects whose type may be deduced from context.

Notations for propositions and for pfs are the same, due to our not using
circumflexes, with the qualification that a propositional notation in which no
variable is free will not be taken to represent a pf here (our theory and our
software do support the option of allowing 0-ary pfs, but here we exclude them).
A term is defined as a notation which is either an individual constant, a variable,
or a pf. We briefly and informally describe our notation, omitting many details.
An atomic proposition is of the form Rn(A1, . . . , An), in which a constant n-
ary predicate is applied to a list of n terms, none of which may be pfs. If
P and Q are propositional notations, then P ∨ Q and ¬P are propositional
notations (other propositional connectives can be added). If xi occurs free
in P , (∀xi.P ) is a propositional notation (universal quantifier; the existential
quantifier (∃xi.P ) can be added: [xi]P is the shape this takes on the computer).
In a completely formal definition, the notion of a free occurrence of a variable in
a propositional notation would be defined recursively simultaneously with the
notion of “propositional notation”. If A1, . . . , An are terms, xi(A1, . . . , An) and
xi!(A1, ..., An) are propositional notations. Both of these indicate application
of a pf to a list of terms. It is worth noting this clause of the definition of free
occurrence of a variable: the free variables in xi(A1, . . . , An) or xi!(A1, ..., An)
are just xi and those Ai’s which are variables: variables occurring in any of
the Ai’s which are composite and thus pfs are bound. The distinction between
these two notations for application is that in the second one the “order” of the
applied variable is presumed to be minimal, if we are working in the ramified
theory of types: this adapts a notation found in PM.

We now describe the definition of the notion of substitution: letA[B1, . . . Bk|y1 . . . yk]
denote the result of substituting Bi for yi for each i simultaneously, where each
yi is actually some variable xj and distinct yi’s are distinct xj ’s. If A is an
elementary proposition Rn(C1, . . . , Cn), replace each yi which occurs as one of
the Ci’s with the corresponding Bi, with the caveat that if a yi occurs among
the Ci’s for which Ai is a pf, the substitution is undefined. Substitution into
negations and disjunctions is unproblematic. Substitution into (∀xi.P ) is al-
most unproblematic: substitution of any term for xi is ignored, but all other
substitutions are carried out on P . In more familiar systems, there is a problem
if some Bk contains the variable xi, but this is not the case here: in any context
in which the variable yk can appear, replacing yk with Bk will give a pf term in
which the occurrences of xi in Bk are bound in Bk or in even smaller scopes.
The variable cannot be captured by the quantifier.

2



Substitution of a termBk for the variable yk = xi in the context xi(C1, . . . , Cn)
is the interesting clause. This can only be done if Ak is a variable (in which case
we just replace it) or if it is a propositional notation with exactly n free vari-
ables z1, . . . , zn (given in increasing order of their actual index), in which case
the result is Ak[C1, . . . Cn|z1, . . . zn]. Otherwise the substitution is undefined.

So far we have defined both notation of our theory and substitution without
reference to type. At this point we have a serious problem. The definition
of substitution fails! For the notation ¬x1(x1) is a propositional notation so
far as we can tell up to this point, and the attempt to replace the variable x1
in ¬x1(x1) with ¬x1(x1) itself (to compute ¬x1(x1)[¬x1(x1), x1]) leads to an
infinite regress. In effect, we have reproduced Russell’s paradox (or perhaps
more accurately, Curry’s paradox) in this formalism.

Introducing types fixes this. We will start anachronistically with the simple
theory of types of Ramsey (without orders). We provide the type 0 of individuals
and the type () of propositions. We provide a variable type [xi] to be assigned
to the variable xi whenever we cannot determine its type (this is a provision
for polymorphism). If we have a list of types τ1, . . . , τn we provide the notation
(τ1, . . . , τn) for the n-ary relation type for which the ith argument has type i.

We then assign types to notations recursively. The general form of a type
judgment is that a term t is assigned type τ as a subterm of a larger term T
(which we call the context). A constant ai has type 0 as a subterm of any T .
A variable xi is assigned type [xi] as a subterm of any T (and may be assigned
other types, see below). An elementary propositional notation R1(A1, . . . , An]
has a type (0, . . . , 0) where the number of zeroes is the number of distinct vari-
ables occurring among the Ai’s, or () if no variables occur; in addition, any
variables occuring in the argument list are assigned type 0 in any context in-
cluding R1(A1, . . . , An]. In a notation x1(A1, . . . , An) or x1!(A1, . . . , An), sup-
pose the terms Ai can be assigned types τi in the current context. We then
assign the type (τ1, . . . , τn) to xi in this context. Suppose that σ1, . . . , σm is
the list of types assigned to the distinct variables among the Ai’s and xi, listed
in index order: then we can assign the type (σ1, . . . , σm) to x1(A1, . . . , An) or
x1!(A1, . . . , An). In any other pf term, let σ1, . . . , σm be a list of types assigned
to the variables occurring free in the notation listed in index order: assign the
type (σ1, . . . , σm) to this notation. If no variables are free at all, assign the
type (). Note that we only assign types to pf subterms of a context if they
are either the whole context or one of the arguments of a pf application term.
Finally, we only regard a context term as well-typed if all types assigned to each
of its subterms are compatible, including additional type assignments which are
forced in a way we now describe. The type 0 is compatible only with 0 and
types [xi]. The type (τ1, . . . , τn) is only compatible with types [xi] where [xi]
does not occur in (τ1, . . . , τn) in the obvious sense and with types (σ1, . . . , σn)
where each τi is compatible with σi. The type [xi] is compatible with any type
in which [xi] itself does not occur as a proper component. Further, whenever
type [xi] is assigned to a subterm A, type t is assigned to the same subterm A,
and a type u is assigned to any other term B, the result u[t/[xi]] of replacing
all occurrences of xi with t in u is also assigned to B. A term is typable if it is

3



assigned a type by this process and any two types assigned to the same subterm
by this process are compatible.

The idea here is that types are computed by unification in a way famil-
iar from the polymorphic type systems of computer languages like ML. It is
straightforward to establish that a term which can be assigned a type can be
assigned a single most general type from which all specific types that can be
assigned to it can easily be determined. Further, it is straightforward to estab-
lish that the definition of substitution works correctly if one stipulates that to
be well-formed a term must be typable and that types of Bk’s considered as
their own context must be compatible in a suitable sense with types of yk’s as
subterms of the context A in a substitution A[B1, . . . Bk|y1 . . . yk].

There are some interesting technical points. Although variables appearing
in propositional functions appearing as arguments of propositional function ap-
plication terms are bound, the type algorithm can lead to difficulties (bound
variable collisions) as the algorithm unifies variable types. This can be avoided
by renaming bound variables before the type algorithm is applied.

The implementation of the simple theory of types in software was quite
straightforward: it is both suggested by and served to inform the development
of the formalization outlined above. The ramified theory of types (the full type
system of PM with orders) presents more difficulties.

The motivation behind the ramified theory is as follows. The type of a
propositional function in the simple theory of types is determined by the types
of its arguments, and all types of its arguments must be simpler than its type:
understanding the meaning of a propositional function involves understanding
the entire range of the types of its arguments, so it cannot without circularity be
a component of one of those types. The authors of PM hold that understanding
the meaning of a pf involves prior understanding of the type over which any
quantified variable appearing in the pf ranges. More concretely, Russell suggests
in PM that a quantified sentence is to be understood as expressing an infinitary
conjunction or disjunction in which sentences referring to every object of the
type quantified over must occur. If quantified sentences are to be interpreted in
this way, then the appearance of a quantified variable in a pf with the same type
as the pf or a more complex type would lead to formal circularity on expansion
to infinitary form.

The restriction is enforced in RTT by adding to each type a new feature,
a non-negative integer called its “order”. The order of type 0 (the type of
individuals) is 0. The type () of propositions in simple type theory is partitioned
into types ()n for each natural number n, where the order n will be the least
natural number greater than the order of the type of any variable which occurs
in the proposition (including quantified variables). A pf notation P containing
n free variables xik (listed in increasing order) with types tk will be assigned
type (t1, . . . , tn)m, where m is the smallest natural number greater than the
order of any of the types tk and the order of the type of any variable quantified
in P . A similar rule applies to the typing of head variables xi in expressions
xi(A1, . . . , An) or xi!(A1, . . . , An): the type of xi will be (t1, . . . , tn)r where each
tk is the type of Ak, and the order r is larger than the orders of the tk’s; in

4



the term xi!(A1, . . . , An), the order r must be the smallest order larger than all
orders of tk’s.

The technical difficulty which arises, which we will not go into in the brief
space of this report, but which we will try to give a flavor of in our presentation
by considering examples, is that unification of polymorphic types with orders
has a kind of complexity not usually found in sensible type systems. Each
polymorphic type variable has an unknown order, and unification will generate
a set of arithmetic inequalities relating the orders of the polymorphic variables.
The final version of the software implements an algorithm which will precisely
describe the conditions on orders of polymorphic types which are needed for
a term to be typable, but these can be rather complicated. We have a partial
algorithm which will very often generate a ramified type which will work without
inequalities on the orders of polymorphic type as side conditions (it worked for
all examples in [3]). This partial algorithm is the one we plan to use in our
proposed proof checker for the language of PM , but the complete type checking
algorithm was quite interesting and challenging to develop.

References

[1] Holmes, M. Randall, software files (in standard ML) rtt.sml (source
for the type checker) and rttdemo.sml (demonstration file), accessible at
http://math.boisestate.edu/∼holmes/holmes/rttcover.html.

[2] Holmes, M. Randall, “Polymorphic type–checking for the ramified theory of
types of Principia Mathematica”, in Fairouz Kamareddine, ed., Thirty–five
Years of Automating Mathematics, Kluwer, 2003, pp. 173-215.

[3] Kamareddine, F., Nederpelt, T., and Laan, R., “Types in mathematics and
logic before 1940”, Bulletin of Symbolic Logic, vol. 8, no. 2, June 2002.

[4] Whitehead, Alfred N. and Russell, Bertrand, Principia Mathematica (to
*56), Cambridge University Press, 1967.

5


