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Abstract. A common objection to Quine’s set theory “New Foundations” is that it is

inadequately motivated because the restriction on comprehension which appears to avert

paradox is a syntactical trick. We present a semantic criterion for determining whether a

class is a set (a kind of symmetry) which motivates NF .
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1. Introduction

A common criticism of Quine’s set theory “New Foundations” (from the
name of the paper [9] in which it was introduced, hereinafter NF ) is that
it is motivated by a mere “syntactical trick”. In this paper, we present a
different motivation for NF involving a criterion for sethood which is not
syntactical in nature.

In this section, we briefly introduce NF in the usual way and review
the known difficulties with this theory, then present the motivation for the
general approach we take. In the second section, we discuss obstructions
to the implementation of this criterion; in the third section we present the
formalized implementation.

The first and third sections should be accessible to the reader unfamiliar
with NF ; in the second section the reader may find that we presume famil-
iarity with prior research in NF . The first and second sections do not as
a rule contain proofs (and may presume familiarity with some definitions),
but proofs of assertions made in these sections and definitions of concepts
used will often be found in the third section.

NF is a first-order theory with equality and membership as primitive
relations. The axioms are as follows:

Axiom 1.1. (Axiom of Extensionality) Objects with the same elements are
the same: (∀AB.A = B ≡ (∀x.x ∈ A ≡ x ∈ B)).
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Definition 1.2. A formula φ is said to be stratified iff there is a function
σ from variables (considered as items of syntax) to natural numbers such
that for every subformula ‘x = y’ of φ we have σ(‘x’) = σ(‘y’), and for every
subformula ‘x ∈ y’ of φ we have σ(‘x’) + 1 = σ(‘y’).

Axiom 1.3. (Axiom Scheme of Stratified Comprehension) For each stratified
formula φ, let A be a variable not free in φ: we have an axiom (∃A.(∀x.x ∈
A ≡ φ)). Extensionality tells us that there is only one such object A, for
which we may use the notation {x | φ}.

Comments 1.4. The machinery of stratification is optional: the axiom
scheme of stratified comprehension is equivalent to the conjunction of a finite
collection of its instances (so NF is finitely axiomatizable). The standard
reference for this is [6] though this is far from the best finite axiomatization.
It is more convenient to use this criterion in practice, and of course this is
how the theory was originally defined. It is easy to show that the criterion
can be relaxed to require that the conditions on σ only apply to atomic
subformulas in which both variables are bound in the set abstract (this is
the criterion of “weak stratification”).

The stratification criterion can be described more economically yet: a
set {x | φ} is provided by stratified comprehension just in case it is possible
to assign types to the variables in φ in such a way as to obtain a well-formed
formula of a simple typed theory of sets TST which we now describe.

TST is a first-order multisorted theory with primitive relations equality
and membership and sorts (“types”) indexed by the nonnegative integers.
Informally, 0 is a type of “individuals” and n+1 is the type of sets of objects
of type n. This is enforced by the type conditions on equations (xn = yn) and
membership statements (xn ∈ yn+1). The axioms of TST are extensionality
(as in NF in appropriate types) and comprehension ({xn | φ}n+1 exists for
any formula φ). The axioms of NF are exactly the axioms of TST with
all indications of type removed (as long as this creates no identifications of
variables of different types).

TST is obtained by considerable streamlining of Russell’s theory of types
of PM : one first applies Ramsey’s elimination of orders (obtaining an im-
predicative theory of sets and relations) then uses the Kuratowski pair to
define relations as sets. Quine observed that TST has a considerable degree
of polymorphism: for any formula φ, define φ+ as the formula obtained by
incrementing each type index in φ: then φ is a theorem if and only if φ+

is a theorem, and for each object {xn | φ}n+1 that we can define, there is
an exactly analogous object {xn+1 | φ+}n+2 in the next higher type, and
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analogous objects in each higher type. Quine suggested on the basis of these
observations that the types could be identified: it has been shown since by
Specker that NF is equivalent in consistency strength to TST plus the ax-
iom scheme φ ≡ φ+, and also that the consistency of NF is equivalent to
the existence of a model of TST in which the types are isomorphic to one
another in a suitably defined sense.

A discussion of the historical development of the type theory TST is
found in [14].

It should be clear that this procedure is suspect. The motivation for
the criterion of sethood is entirely syntactical and quite innocent of any
suggestion as to what a model would be like. No one has been able to come
up with a proof of consistency of NF in the more than sixty years since the
theory was proposed. No one has come up with a proof of inconsistency,
either (contrary to rumors apparently based on the inconsistency found in
the first edition of Quine’s Mathematical Logic (the second edition, [10],
discusses the error and gives an apparently successful correction), which
derived from an overenthusiastic attempt to extend NF with proper classes).
A disturbing result of Specker is that NF disproves the axiom of choice (see
[12]).

There are subtheories of NF which are known to be consistent. NFU
(New Foundations with urelements) differs from NF simply in restricting
extensionality to objects with elements (it is usual to let one of the element-
less objects be the empty set ∅ and refer to the other elementless objects as
urelements). Jensen defined this theory in [7] and showed that it is consis-
tent with Infinity and Choice, and that it has ω-models. (NF proves Infinity,
because if the universe were finite it could be well-ordered and choice would
hold). NFI , defined and shown to be consistent by Marcel Crabbé in [2],
differs from NF in allowing only those sets {x | φ} for stratified formulas
φ in which no variable is assigned a type higher than that of x (this is a
predicativity restriction, though NFI does allow certain impredicative set
definitions). NF3, defined and shown to be consistent by Grishin in [5], al-
lows those sets whose definitions can be typed using three types. The latter
two theories have full extensionality.

NFU is a serviceable foundation for mathematics, with a hierarchy of
extensions analogous to that of ZFC . The other two theories are probably
best regarded as curiosities, though a case could be made for the use of NFI
(or its subset NFP which allows only “predicative” set definitions) as weak
foundational systems, and NF3 has a quite interesting relation to the model
theory of TST .

We now present the alternative motivation for NF which is the subject
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of this paper. The observation with which we start is that any definable
set in TST is invariant under permutations of type 0. Any set definable in
NF is analogous to a set defined in TST at some type n (and at each type
above n): this set will be invariant under permutations of its n-fold iterated
elements.

We introduce some terminology, taken from [3] (definition of j, page 8).
A bijection from the universe to itself is called a permutation of the universe
(or just a permutation). With any permutation π of the universe, we can
associate a permutation j(π) defined by j(π)(A) = π“A for any set A. We
call a set A “n-symmetric” if jn(π)(A) = A for “every” permutation π. We
call a set “symmetric” if it is n-symmetric for some n. Now we can formalize
our observation of the previous paragraph: every definable type n set of TST
is n-symmetric (for each concrete natural number n), and every definable
set of NF is n-symmetric for some n.

This suggests that a possible axiom to adjoin to NF is the assertion that
every set is symmetric. This would be the case in a model of NF in which
every set is an explicit set abstract (a “term model” in a sense proposed by
Thomas Forster; this is not quite the same as a term model of NF in the
usual logical sense).

An interesting assertion to consider is the converse assertion that every
class which is symmetric is a set. Leaving aside difficulties with formalizing
this assertion (which will be dealt with in later sections) this would imply
each parameter-free instance of stratified comprehension. This is not enough
for NF , because we definitely need parameters in set abstracts {x | φ}. But
if every parameter in an instance of stratified comprehension is supposed
symmetric, it is straightforward to show that the class defined by this in-
stance is symmetric. So the conjunction of the assertions that every set is
symmetric and that every class which is symmetric is a set appears to imply
the comprehension scheme of NF .

This motivates our modest proposal, the following

Criterion 1.5. (Symmetry) A class is a set iff it is symmetric (i.e., iff it is
n-symmetric for some n).

2. Difficulties and Refinements

In this section, we discuss our Criterion for sethood and refine it to avoid
certain difficulties. Formal definitions and proofs are left for the final section.

The Criterion, if it can be made rigorous, is (apparently) semantic in
character rather than syntactical. It is analogous to the Limitation of Size
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criterion for sethood often considered in connection with the usual set theory:

Criterion 2.1. (Limitation of Size):] A class is a set iff it is small (i.e., iff
there is no class bijection between it and the universe).

To have such a criterion for sethood which yielded NF would be new and
interesting.

Any such Criterion, to be useful, must be accompanied by some kind of
theory of classes. The Limitation of Size criterion needs nothing more than
the axiom of class comprehension,

Axiom 2.2. (Axiom of Class Comprehension) For any formula φ, the class
of all sets x such that φ exists. (Any element of a class is understood to be
a set).

To avoid triviality, an axiom asserting the existence of at least two sets is
sufficient. If there are at least two sets, then the empty set and the singleton
of any set are sets by Limitation of Size. This establishes the existence of at
least three distinct sets, which ensures that all unordered pairs exist. Once
unordered pairs are available, Kuratowski pairs can be constructed, and any
formula with two open variables corresponds to a class relation in the way
one expects. The existence of at least two sets is necessary because the
empty universe and the universe whose sole element is the empty set both
satisfy the Limitation of Size criterion. To get infinite sets one of course
needs more axioms, but we are not developing the usual theory of sets and
classes here.

The situation with our Criterion is more complex because the criterion
of symmetry is logically more complex than the criterion of smallness. We
do need to ensure that definable permutations of the universe are classes, so
the axioms of Class Comprehension and Pairing seem to be needed (Pairing
turns out not to be needed as an explicit axiom in the final formalization,
but it is proved as a lemma in the development).

But further we need to be able to define n-symmetry for arbitrary n. This
involves assertions about all permutations jn(π) for a given permutation π,
which might seem to require a theory of collections of permutations. In fact
(as is exhibited in the formalization) it is possible to define a single object
which codes all permutations jn(f).

Nonetheless, it does appear that a higher-order theory, with classes of
sets and superclasses of classes, is actually needed to formalize our Criterion.
The reasons for this have to do with predicativity of class comprehension
axioms.
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The axiom of Class Comprehension, when used in conjunction with the
Limitation of Size criterion, is usually taken to be “predicative”: the formula
φ is not allowed to contain quantifiers over classes. However, the usual
definitions of natural numbers are impredicative, and natural numbers are
needed for the definition of symmetry (= “n-symmetry for some n”).

We cannot use fully impredicative class comprehension because this would
allow the definition of the class of Russell-Whitehead ordinals of genuine
well-orderings, which is obviously symmetric and is known not to be a set
in NF (this was Quine’s error in the first edition of ML). It is possible that
some kind of single class comprehension axiom which allows the definition of
the natural numbers but forbids the definition of true well-orderings could
be used, but we have chosen to use a development using sets, classes whose
elements are sets, and superclasses whose elements are classes, with a pred-
icative axiom of comprehension for classes and an impredicative axiom of
comprehension for superclasses. As can be seen in the formalization sec-
tion, this allows the needed definition of natural numbers and of the single
(superclass) structure formalizing all the maps jn(π) for any superclass per-
mutation π.

Further, we need to consider what permutations are quantified over in the
definition of symmetry. It is known that considering just set permutations
will not work: certain proper classes (such as the class of “strongly canto-
rian” sets) are known to be symmetric with respect to set permutations.
It seems reasonable to use the class of “setlike” permutations introduced
by Forster ([3], p. 8): a permutation of the universe is setlike just in case
jn(f) is a permutation for each n (a permutation π can fail to have j(π) a
permutation if π“A is not a set for some set A). Note that a permutation is
necessarily a permutation of the universe of sets, since a superclass ordered
pair {{a}, {a, b}} can only exist for a and b sets. Further, there seems to be
no reason to restrict ourselves to setlike class permutations: we consider all
setlike superclass permutations.

The use of setlike permutations relates the symmetry criterion for set-
hood to Rieger-Bernays permutation methods ([11], [1]; [13] is the original
reference for use of these methods in NF ). We note the interesting result
of Pétry, Henson and Forster that a sentence φ is invariant under Rieger-
Bernays permutation methods using arbitrary setlike permutations just in
case it is equivalent to a stratified formula ([3], p. 94). We will see in the
formalization below that a lemma important in the study of Rieger-Bernays
permutation methods is also needed here to verify that stratified compre-
hension follows from the symmetry criterion for sethood.

The notion “strongly cantorian” has already been seen to cause difficul-
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ties. Since the class of strongly cantorian ordinals is not a set and is def-
initely a class (being definable) there must be a setlike permutation which
moves a strongly cantorian ordinal α to a non-strongly cantorian ordinal
β. As can be seen in detail in the development in the formalization of the
next section, α is not n-symmetric for any n in the most general sense: it
is necessary to introduce a notion of “support” to restrict the permutations
considered in relation to α so that it achieves the level of symmetry expected
of any ordinal. The underlying idea is that in testing the symmetry of α, we
should restrict ourselves to permutations in a subset of the world in which
α is a standard object, in some sense. In any event, the notion of support
introduced appears to work technically. This technical refinement of the
definition of symmetry preserves the condition that all sets are symmetric
with respect to set permutations of the universe.

The theory developed in the formalization is not just NF . The additional
consequence that all sets are symmetric is known to be independent of NF
(Rieger-Bernays permutation methods can be used to construct models of
NF in which there are non-symmetric sets, given any model of NF : for
example, a set which is its own singleton is not symmetric, and it is easy
to get such sets using permutation methods). The fact that all sets are
symmetric relative to set permutations (which holds even when the notion
of “support” hinted at in the last paragraph is introduced) makes it obvious
that Choice does not hold (so there is no reason to appeal to Specker’s
rather strange proof of this fact in NF proper): Choice implies the existence
of a well-ordering of the universe, and a well-ordering of the universe clearly
cannot be symmetric. It turns out that we can prove that all classes of
Frege natural numbers are sets; this is known to strengthen NF , and it is
a useful and appealing result. Analysis of the notion of strongly cantorian
set using the symmetry criterion allows us almost to demonstrate the very
useful proposition that any subclass of a strongly cantorian set is a set; we
suggest an additional combinatorial axiom governing permutations which
would allow us to complete this proof.

The previous considerations should allow the reader to get some idea
of the motivation behind features of the formalization in the next section
that might seem strange. The final question to be raised in this section
is philosophical rather than technical: does the Criterion of symmetry for
sethood have any philosophical appeal?

An answer to this kind of question is necessarily less likely to be convinc-
ing than an answer to a technical mathematical question. Nonetheless, we
have a proposal. If a set X is to be used as the domain of a set theory, this
can be done in a very general way using an injection f : X → P(X) from
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elements of X to subcollections of X. We understand that this idea is found
in the foundational work of Ennio de Giorgi, so we call such a map f a “de
Giorgi map”, though our use of this idea is independent of de Giorgi (see our
[8]). Properties of the map f correspond to properties of the implemented
set theory (for example, we have forced the set theory to be extensional by
stipulating in advance that the map is an injection). P(X) is the domain of
classes for the implemented set theory, while f“(X) is the domain of sets for
the implemented set theory. The membership relation for the implemented
theory is x ∈f y ≡def x ∈ f(y). Each element x of X implements the set
f(x) ∈ P(X). Note that it also implements a set of sets (an element of
P2(X) defined as f“(f(x)). More generally, an element x of X corresponds
to an element fn(x) of Pn(X), where f1(x) = f(x) and fn+1(x) is com-
puted by first taking fn(x) (finding the element of Pn(X) corresponding to
x), then applying f to each of its n-fold elements: fn+1(x) = jn(f)(fn(x)),
which gives an inductive definition.

We then observe that it seems reasonable to suppose that the details of
the map f from X to P(X) are arbitrary: what is important for the set
theory is not which element of X represents a given set, but which sets (and
sets of sets, etc.) are actually represented. To implement this notion, we note
that if π is a permutation of X which is “setlike” in the sense that jn(π) is a
permutation of Pn(X) for each n, then replacing the notion of “membership”
on X x ∈f y defined by x ∈ f(y) with x ∈f◦π y ≡def x ∈ f(π(x)) will give
an implemented set theory with the same sets, sets of sets, etc. as the
set theory based on the de Giorgi map f . (It is straightforward to show
that stratified sentences of the interpreted set theory have their truth values
preserved under this transformation). We suggest that the de Giorgi map
implements “data types” “set”, “set of sets”, and so forth (corresponding
to the types of TST ); the correlation between specific sets of a given type
and sets of a different type is arbitrary, and properties depending on this
correlation are not really properties appropriate to that data type. The
actual properties of an object qua the data type “element of Pn(X)” will be
those which are invariant under permutations of X n levels down – i.e., the
n-symmetric properties – and the properties of sets considered in general will
be those which are properties of “type n sets” for some n, which are seen to
be exactly the properties whose extensions are symmetric. We introduced
this motivation for NF in [8], though we did not at that time suggest that
all sets are symmetric.

A final remark of a philosophical character is that we are not certain
that “syntax” is entirely excluded from this motivation for NF , since the
distinction between classes and superclasses seems to have something to do
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with classes being “definable”, and definability is a notion with a strong
relationship to syntax! However, the symmetry criterion has much more to
do with what a class being tested for sethood is like qua class than does the
criterion of stratification applied to its formal definition.

The obvious gap here is that we do not claim to have any idea how to
construct a model of set theory with symmetric comprehension; however, we
do claim that it should be easier to think about what a model of this theory
must be like than to think about what a model of NF needs to be like.

3. Formalization

This section presents the formalization.
The theory we present is a first order theory with equality and member-

ship as primitive relations.
General objects of this theory are called superclasses. Any element is a

class. Any element of a class is a set .
The comprehension axiom for superclasses asserts that for any formula

φ there is a superclass {x | φ}∗ whose elements are exactly the classes which
satisfy φ.

Axiom 3.1. (Extensionality) Superclasses with the same elements are the
same.

Axiom 3.2. (Superclass Comprehension Scheme) For any formula φ, (∃A.(∀x.x ∈
A ≡ ((∃y.x ∈ y) ∧ φ))), where A is not free in φ.

The comprehension axiom for classes asserts that for any formula φ in
which all quantifiers are restricted to sets (or, equivalently, in which each
quantifier is bounded by a class) and in which any parameters are sets, there
is a class {x | φ} whose elements are exactly the sets such that φ.

Axiom 3.3. (Class Comprehension Scheme) For any formula φ in which each
quantifier is restricted to a class, (∃A.(∀x.x ∈ A ≡ ((∃yz.x ∈ y∧y ∈ z)∧φ))),
where A is not free in φ.

We define ordered pairs, relations, and functions as usual.

Definition 3.4. {x, y} = {z | z = x ∨ z = y}. {x} = {x, x}. 〈x, y〉 =
{{x}, {x, y}}. Observe that there is no commitment at this point to the
existence of any unordered or ordered pairs as sets; all we can tell at this
point is that if x and y are sets, the unordered pair of x and y will be a class
and the ordered pair of x and y will be a superclass.
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Definition 3.5. A relation is a superclass of ordered pairs. A function
is a superclass of ordered pairs f such that if 〈x, y〉 ∈ f and 〈x, z〉 ∈ f ,
then y = z. A one-to-one function is a function f such that if 〈x, z〉 ∈ f
and 〈y, z〉 ∈ f , then x = y. A permutation of the universe is a one-to-one
function f such that if x is a set, there is some 〈x, y〉 ∈ f . For any function
f , we define f(x) as the y such that 〈x, y〉 ∈ f .

Note that the word “universe” always refers to the class of all sets.

We now need to define the notion jn(f) for a permutation of the universe
f . This is somewhat tricky.

Definition 3.6. We define the superclass of Zermelo natural numbers as the
intersection of all superclasses which contain ∅ and contain {x} whenever
they contain x and x is a set. We define a Zermelo natural number as a
superclass which is either the empty set or the singleton of an element of the
superclass of Zermelo natural numbers (observe that it is possible (on the
basis of axioms given so far) that there is a last Zermelo natural, which is a
superclass whose sole element is the last class Zermelo natural). We refer to
∅ as 0. We refer to {n} for n a Zermelo natural as n + 1, and we will refer
to the concrete Zermelo naturals as 0,1,2. . ., although these will not be the
natural numbers of our set theory.

We now develop the construction for any permutation f of the universe
of a set jf which will (for setlike permutations) be a function with the
property jf (〈n, x〉) = jn(x). The natural numbers n are represented as
Zermelo naturals.

Definition 3.7. Let f be a permutation of the universe. We define jf
as the intersection of all superclasses C which contain 〈〈0, x〉 , y〉 whenever
〈x, y〉 ∈ f and the pair 〈〈0, x〉 , y〉 is a class, and which contain 〈〈n+ 1, A〉 , B〉
whenever B = {w | (∃z.z ∈ A ∧ 〈〈n, z〉 , w〉 ∈ C)} and 〈〈n+ 1, A〉 , B〉 is a
class.

Definition 3.8. Let f be a permutation of the universe. We say that f is
setlike just in case the superclasses jn(f) = {〈x, y〉 | y = jf (n, x)} for each
Zermelo natural n are permutations of the universe. Note that since we have
defined jn(f) we have also defined jn(f)(x) for a set x (note that jn(f) may
be a partial function in some cases). We further define jn(f)(A) for any class
(or superclass) A as jn−1(f)[A] (note that this will agree with the definition
of jn(f)(A) if f is setlike and A is a set). Observe that the mere existence
of any setlike permutation implies that every Zermelo natural number is a
set, and so that there is no last Zermelo natural. This is rather artificial,
but will turn out to be all right.
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Observation 3.9. The definition of jf and the induced definition of the
functions jn(f) makes sense even if f is not a permutation.

Definition 3.10. We define the superclass of finite classes as the intersec-
tion of all superclasses C which contain ∅ and contain {x | x ∈ a ∨ x = y}
for every class a ∈ C and set y.

Definition 3.11. Let x be a class. We say that x is n-symmetric with
support (m, a), where m is a Zermelo natural and a is a finite class such
that ji(f)(a) = a for all set permutations f and i ≥ m, if jn(f)(x) = x
for all setlike permutations f such that jm(f)(a) = a (note that this will
include all set permutations f which happen to be setlike). Note that if a is
the empty set this amounts to jn(f)(x) = x for all setlike f . We say that x
is symmetric if x is n-symmetric with support (m, a) for some n, m, and a.

It might seem that some restriction like m ≤ n is needed to prevent
arguing that any class x such that jn(f)(x) = x for all set x is n-symmetric
with support (n + 1, {x}). But notice that this requires {x} to be a finite
class, which already requires x to be a set. An attempt to bound m with
respect to n appears to break the proof that unions of sets are sets.

Definition 3.12. The “support condition (m, a)” (m a Zermelo numeral, a
a finite class) is defined as the condition “jm(f)(a) = a” on setlike permu-
tations f . We are only interested in support conditions if they satisfy the
side condition “ji(f)(a) = a for all set permutations f and i ≥ m”. Note
that this is the same as requiring that all jk(f) for f a set permutation and
k a Zermelo natural satisfy the support condition: we are only interested in
support conditions satisfied by all set permutations and their iterated images
under j.

We are ready to state the symmetric comprehension axiom for sets.

Axiom 3.13. (Symmetric Comprehension) A class x is a set iff it is symmet-
ric.

Theorem 3.14. There is a nontrivial setlike permutation. Otherwise every
definable class would be vacuously symmetric and thus a set, including the
Russell class.

Theorem 3.15. ∅ is a set.

Proof. This is obviously 1-symmetric.

Theorem 3.16. If x is a set, then ι(x) = {x} is a set.
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Proof. If x is n-symmetric with support (m, a), then ι(x) is (n + 1)-
symmetric with the same support.

Definition 3.17. Let m and n be Zermelo naturals. Define m < n as
holding when n belongs to any superclass which contains m+1 and is closed
under singleton (i.e., under successor).

Definition 3.18. If A is an unordered pair of sets (which will be a class and
which may be a singleton) and a ∈ A, we define the element which occurs
in A with a as the unique b such that {a, b} = A.

Definition 3.19. If x is a set and n is a Zermelo natural, let F be the
intersection of all superclasses which contain {0, x} and are closed under the
operation which takes any {a, b} to {ι(a), ι(b)} (this is a nonce definition).
We would like to define ιn(x) as the unique y which is the element which
occurs with n in some element of F ; however, there is a bad case. If x
is a Zermelo natural less than n, there will be two such y’s, both Zermelo
naturals, and in this case we choose the larger of the two; in all other cases
there is a unique such y. Since we have not yet shown that unordered pairs
of sets are sets, we cannot yet use ordered pairs to define this sensibly, but
we will shortly be able to do this.

Definition 3.20. For any finite class x, we can find a Zermelo natural |x|,
the unique Zermelo natural which belongs to an element also containing x
(and must be 1 if x is a nonzero Zermelo natural itself) of the intersection of
all superclasses which contain (0, ∅), contain each unordered pair {1, {x}},
contain {n+ 1, x∪{y}} whenever they contain {n, x}, where n is a Zermelo
natural, which must be 1 if x is also a nonzero Zermelo natural, and y 6∈ x is
a set. Using this formalization of cardinality of sets, it is possible to define
standard arithmetic on the Zermelo naturals with some work. It is also
possible to define m + n as ιm(n). The arithmetic notions needed below
have to do with addition, subtraction, and order.

Theorem 3.21. For any class A and Zermelo natural n, A is a set iff ιn[A] =
{ιn(x) | x ∈ A} is a set.

Proof. A class A is m-symmetric with a given support iff ι[A] is (m+ 1)-
symmetric with the same support. Induction on the Zermelo naturals allows
us to extend this result to ιn[A].

Theorem 3.22. If a set is n-symmetric with support (m, a), it is also (n+1)-
symmetric with support (m+ 1, a).
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Proof. If f satisfies jm+1(f)(a) = a, then j(f) satisfies jm(j(f))(a) = a,
and if x is n-symmetric with support (m, a), we will have jn+1(f)(x) =
jn(j(f))(x) = x, so x is (n+ 1)-symmetric with support (m+ 1, a) as well.
The side condition that ji(f)(a) = a for set permutations f and i ≥ m + 1
follows immediately from the original side condition that ji(f)(a) = a for
set permutations f and i ≥ m.

Theorem 3.23. If x is a set, then {{x}, ∅} is a set.

Proof. If x is n-symmetric with support (m, a) this means that for any set-
like f with jm(f)(a) = a, we have jn(f)(x) = x, so we also have jn+2(f)({{x}, ∅}) =
{{x}, ∅}, so {{x}, ∅} is (n+ 2)-symmetric with support (m, a).

Definition 3.24. If A is a class, define A0 = {{{x}, ∅} | x ∈ A}. (This
operation is defined for the nonce – its scope includes only the next theorem.)
Note that A0 is a set iff A is a set, as A0 will be (m+ 2)-symmetric with a
given support iff A is m-symmetric with the same support.

Theorem 3.25. The conjunction of any two support conditions (m1, a1) and
(m2, a2) is equivalent to a single support condition.

Proof. Suppose w.l.o.g. that m2 ≥ m1 ≥ 1.
Observe that a2 is fixed by jm2(f) (f any permutation or indeed any

function (if the definition of j is extended appropriately)) iff a02 (as defined
just previously) is fixed by jm2+2(f). Further, a1 is fixed by jm1(f) iff
ιm2−m1+2[a1] is fixed by jm2+2(f).

The desired support condition will be (m2 + 2, a02 ∪ ιm2−m1+2[a1]): the
second component will be fixed by jm2+2(f) iff a2 is fixed by jm2(f) and a1
is fixed by jm1(f).

It is straightforward to prove that the elementwise image under ι (or ιn)
of a finite class is a finite class and that the union of two finite classes is a
finite class, so the needed finite classes here exist. The reason for use of the
A0 construction is that there are no double singletons in a02, whereas every
element of ιm2−m1+2[a1]) is a double singleton (at least), which ensures that
no permutation (or other function) j2(f) will move items between the two
classes, which is essential to showing that the single condition implies the
two parts of the conjunction.

One needs to verify further that for any i ≥ m2 + 2 and set permutation
f , we have ji(f) fixing a02 ∪ ιm2−m1+2[a1] (the side condition on the new
support condition). Let k = i − (m2 + 2). ji(f) = jm2+2(jk(f)). This
fixes a02 ∪ ιm2−m1+2[a1] iff jm2(jk(f)) fixes a2 and jm1(jk(f)) fixes ai: both
of these conditions hold by the side conditions on the original two support
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conditions. It is important to note that we do not need to assume here that
jn(f) is necessarily a permutation for set permutations f (we do not yet
know that set permutations are setlike) though we will be able to show that
this is the case below.

Theorem 3.26. If x and y are sets, {x, y} is a set.

Proof. Suppose that x is n1-symmetric with support (m1, a1) and y is n2-
symmetric with support (m2, a2) and (w.l.o.g) that n2 ≥ n1. Then {x, y}
is (n2 + 1)-symmetric with support equivalent to the conjunction of the
conditions (m1 + n2 − n1, a1) and (m2, a2).

Corollary 3.27. Ordered pairs of sets are sets. Class relations and func-
tions on the universe of sets are freely definable.

Theorem 3.28. The image of a set under a set map is a set.

Proof. Setlike permutations of sufficient depth (i.e., images under jn for
large enough n) and support will fix both the set and the set map. Exam-
ination of the effect of such permutations on the set map reveals that the
image of the set under the map must also be fixed: if permutations with
enough depth and support fix both the set and the set map, they must also
fix the restriction of the map to the set, and so fix the image as well. This
allows us to show that the image is symmetric.

We give the detailed calculation. Let F be a set function and A be a
set. For any set b, b ∈ F [A] iff there is {{a}, {a, b}} ∈ F with a ∈ A.
For n large enough so that F is n-symmetric and A is (n − 2)-symmetric
and any setlike f satisfying appropriate support conditions we have that
{{jn−3(f)(a)}, {jn−3(f)(a), jn−3(f)(b)}} belongs to F as well, with jn−3(f)(a) ∈
A, from which it follows that jn−3(f)(b) ∈ F [A], from which it follows that
F [A] is (n− 2)-symmetric with suitable support.

Theorem 3.29. Every set permutation is a setlike permutation.

Proof. By the previous theorem, if f is a set permutation, j(f) is a class
permutation. Now if f is n-symmetric with a given support, j(f) is (n+ 1)-
symmetric with the same support, and so is a set. It follows that jn(f) is a
set permutation for every n.

Theorem 3.30. For any set x,
⋃
x is a set.
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Proof. If x is n-symmetric with support (m, a) and n > 1, then x is also
(n+ 1)-symmetric with support (m+ 1, a), whence

⋃
x is n-symmetric with

support (m+ 1, a).

Theorem 3.31. If φ is a stratified formula with all variables (free and bound)
restricted to the class of sets, the class {x | φ} is a set.

Proof. For any setlike permutation f , define x ∈f y as x ∈ f(y). De-
fine f0(x) as x and fn+1(x) as jn(f)(fn(x)) (as in [3], p. 96): fn+1 =
jn(f) ◦ jn−1(f) ◦ . . . ◦ j(f) ◦ f . For any stratified formula φ, define φf as
the formula which results when all occurrences of ∈ are replaced with oc-
currences of ∈f and all parameters a are replaced with f−1σ(a)(a), where σ

is a fixed stratification of φ (we require w.l.o.g. that all types assigned are
non-negative; we treat expressions f−1σ(a)(a) as if they were single variables

of the same type as a in the construction which follows). It is straightfor-
ward to prove that φ ≡ φf (compare Lemma 3.1.2 in [3], p. 96). First use
the fact that x ∈ f(y) ≡ fn(x) ∈ fn+1(y) to convert every atomic formula
x = y or x ∈f y (that is, x ∈ f(y)) in φf to the form fσ(x)(x) = fσ(y)(y)
or fσ(x)(x) ∈ fσ(y)(y) where σ is the same fixed stratification of φ: this is
possible because of the known relations between values of σ at x and y in an
atomic formula of either form. One can then eliminate applications of the
permutations fn to variables bound by quantifiers ((∀x.φ(x) ≡ (∀x.φ(π(x)))
when π is a permutation of the universe), obtaining a formula which differs
from φ only in the application of fσ(a) to each parameter a in φf , which can-

cels the application of f−1σ(a) introduced in the definition of φf : the formula
obtained in the end is φ itself.

We now apply this to prove symmetry of sets {x | φ(x)}, φ a stratified
formula. Observe that φ(x) ≡ φ(x)jn(f) for any choice of f and n. This

formula will be equivalent to φ(jn(f)−1k (x)), where k is a type assigned to
x, if we require that n be chosen large enough and f be chosen to satisfy
suitable support conditions so that all parameters in {x | φ} will be fixed
by the appropriate jn(f)m, where m is the type assigned to the parameter
(note that jn(f)m is a composition of functions jn+i(f) for 0 ≤ i < m:
choose n large enough so that all parameters are n-symmetric; we need
jn+i(f) to fix each parameter for each value of i below the type of that
parameter; if f is a set permutation, n-symmetry of the parameter will
enforce this condition, and if f is setlike this defines a support condition).
Now observe that we can shift assigned types down by one, so that the type
of x is k − 1 instead of k, and replace the map f with j(f), and obtain
equivalence of φ(x) to φ(jn+1(f)−1k−1(x)) (now requiring (n+ 1)-symmetry of



16 M. Randall Holmes

each parameter and slightly different additional support conditions). Further
observe that jn(f)−1 ◦ jn+1(f)−1k−1 = jn(f)−1k . The resulting equivalence of

φ((jn(f)−1 ◦ jn+1(f)−1k−1)(x)) to φ(jn+1(f)−1k−1(x)) for any x establishes the
equivalence of φ(x) to φ(jn(f)(x)) for any x and for any large enough n and
f satisfying the support conditions described above, and this establishes that
the original set is fixed under application of jn+1(f) for such n and f . This
establishes that the original set {x | φ(x)} is symmetric.

Observation 3.32. At this point we have shown that this theory satisfies
NF (Quine’s “New Foundations”) on the class of sets.

In “New Foundations”, the Frege natural numbers are used (the Frege
natural number n is the set of all sets with n elements; it is well-known
that this definition is not circular, as the zero and successor operations for
this scheme of numeration are readily defined); the collection of Zermelo
natural numbers we have used so far cannot make up a set under symmetric
comprehension, because it is not n-symmetric for any n, and is not obviously
a class at all (incidentally, if there are ω-models of NF , there are models of
NF in which the Zermelo naturals make up a set: these are constructed by
Rieger-Bernays permutation methods).

Theorem 3.33. The superclass of sets which are n-symmetric with respect
to set permutations for a fixed Zermelo natural number n is a set.

Proof. It is not obvious from the form of the definition that this is even a
class, because of the role of the superclasses jf in the definition of symme-
try. It is easy to see that this collection is a set for each concrete n: this
is a consequence of stratified comprehension. Let P0 be the set of all set
permutations. For any set P of permutations, the set j[P ] = {j(f) | f ∈ P}
is a set (by stratified comprehension). For any set P of permutations, the
collection of sets which are fixed by all permutations in P is a set (by strat-
ified comprehension). Define a superclass map from the Zermelo naturals
to sets as follows: this will send 0 to P0 and if it sends n to Pn it will send
n + 1 to Pn+1 = j[Pn]. Induction on the Zermelo naturals establishes that
Pn is the superclass of all jn(f) for f a set permutation, and we see that it
is a set by induction as well. Now for any n the set of n-symmetric sets with
respect to set permutations is the set of all sets fixed by all elements of the
set of permutations Pn.

Theorem 3.34. The Frege natural numbers of the embedded NF correspond
precisely to the Zermelo natural numbers as defined earlier.
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Proof. Define the class of von Neumann natural numbers as the inter-
section of all sets which contain the empty set and are closed under the
von Neumann successor operation (λx.x ∪ {x}) (such sets are called “von
Neumann-inductive”). There is an initial segment of the von Neumann nat-
urals which can be placed in one-to-one correspondence with the superclass
of Zermelo naturals in the obvious way. Now for each Zermelo natural n
we can show that the class of all objects which are either a von Neumann
natural less than n or not n-symmetric is a set, contains the empty set and is
closed under von Neumann successor (the von Neumann natural correspond-
ing to the Zermelo natural n is (n+ 1)-symmetric but not n-symmetric). It
follows that any von Neumann natural must belong to each of these von
Neumann-inductive sets, and since it must be n-symmetric with respect to
set permutations for some Zermelo natural n, it follows that it must cor-
respond to some Zermelo natural less than that n: every von Neumann
natural corresponds to a Zermelo natural. The final stage of the argument
is to define the class of Frege naturals which have a von Neumann natural
as an element; this class is readily seen to be symmetric, since what we have
shown (in effect) is that the cardinalities of the von Neumann ordinals are
precisely the cardinalities of the finite classes, and no superclass permutation
will perturb the cardinality of a finite class, and this class must itself be the
whole set of Frege naturals, because it is a set, contains the Frege 0 and is
closed under successor.

Corollary 3.35. This means that the embedded NF satisfies the Axiom
of Counting of Rosser (one form of this axiom is the assertion that the set
of (Frege) natural numbers is strongly cantorian) and strong mathematical
induction. In effect, we have the theory of an ω-model of NF.

Theorem 3.36. There is a symmetric superclass of sets which is not a set.

Proof. Consider the class of order types (equivalence classes of well-orderings
under similarity, i.e., Russell-Whitehead ordinals) of true well-orderings (those
with the property that any subsuperclass of their domain has a minimal ele-
ment). This superclass is clearly symmetric (a true well-ordering cannot be
changed in order type by the application of any bijection to the elements of
its domain), and equally clearly cannot be a set, as we would then have the
Burali-Forti paradox.

Corollary 3.37. A superclass all of whose elements are sets is not neces-
sarily a class.
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Now we turn to the analysis of the important concept of “strongly Can-
torian set”.

Definition 3.38. A set A is strongly cantorian (s.c.) iff ιdA, the restriction
of the singleton map to A, is a set. This is a standard concept from NF .

Definition 3.39. An ordinal is an equivalence class of well-orderings under
similarity. For any well-ordering W , define W ι as {〈ι(x), ι(y)〉 | 〈x, y〉 ∈W}.
If α is the order type of W (i.e., the ordinal which contains W ), define T (α)
as the order type of W ι. It is easy to prove that this does not depend on the
choice of W in α. An ordinal α is called a cantorian ordinal if T (α) = α. An
ordinal α is called a strongly cantorian ordinal (s.c. ordinal) if the domain
of each element of α is strongly cantorian: this implies that for any W ∈ α,
not only is W ι similar to W , but the similarity between them is actually a
restriction of the singleton map (the singleton map itself is a proper class).
A strongly cantorian ordinal α has not only T (α) = α, but also T (β) = β
for each β < α. Some ordinals (for example, the order type of the natural
order on the ordinals) are provably non-cantorian (this is a standard result
about NF ).

Theorem 3.40. The class of strongly Cantorian sets is 2-symmetric under
set permutations. (this is a standard theorem of NF: see [3] for this and
other “standard results”).

Theorem 3.41. The class of all strongly Cantorian sets is not a set. Like-
wise, the class of all order types of strongly Cantorian well-orderings is not
a set. (these are standard theorems of NF).

Corollary 3.42. Fix a Zermelo natural n. There is a setlike permuta-
tion jn(f) which moves a strongly Cantorian ordinal α to a non-strongly-
Cantorian ordinal. For any such f and α, ji(f)(α) 6= α for any i ≥ n.

Proof. We can deduce that the same permutation f sends some s.c. ordinal
α to a non-cantorian ordinal β (if the permutation sends an s.c. ordinal to
a cantorian ordinal which is not s.c., it will send some smaller (still s.c.)
ordinal to a non-cantorian ordinal). The study of this α motivates the role
of support in the definition of n-symmetry. For we have jn(f)(α) = β, from
which it is easy to deduce that jn+i(f)(α) = T i(β) 6= α, by looking at the
action of f on orders on sufficiently iterated singletons: if jn−1(f) sends W
of order type α to W ′ of order type β, then jn+i−1(f) will send W ιi ∈ α to
(W ′)ι

i ∈ T i(β) from which we can further deduce that jn+i(f)(α) = T i(β)
for every i. However, if g is any setlike permutation such that j3(g)(W ) = W ,
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where W ∈ α, it is easy to see that j4(g)(α) = α, so α is 4-symmetric
with support (4, {W}) (it is easy to see that j3(g)(W ) = W for set g and
W ∈ α, as required in the definition of symmetry). The role of support is to
ensure that our setlike permutation sends well-orderings of type α to well-
orderings of type α: consideration of the action of f on the map witnessing
similarity between W and any other element of α allows us to see this.
(Setlike permutations jn(f) with n at least 4 always send ordinals to ordinals,
but non-set setlike permutations may induce external automorphisms of the
ordinals; support conditions control this behavior.)

Next, we analyze the structure of a strongly Cantorian set A by consid-
ering the symmetry of ιdA.

Theorem 3.43. If A is strongly cantorian, then there is a fixed n such
that every element of A is n-symmetric (but not necessarily with uniform
support). Any set all of whose elements are n-symmetric with a fixed support
(m, a) is strongly Cantorian.

Proof. If ιdA is a set, it will be n-symmetric with support (m, a) for some
choice of n, m, a.

Assume that jm(f)(a) = a (note that this will be true if f is a set).
It follows that for any b ∈ A there is c ∈ A such that jn−1(f)(〈b, {b}〉) =
〈c, {c}〉. Here we will have jn−3(f)(b) = c and jn−3(f)({b}) = {c}, from
which it follows that jn−3(f)(b) = jn−4(f)(b). If we then consider f = jk(g),
we find that jn−3+k(g)(b) = jn−4+k(g)(b) for each k for suitable g. If f is
a set, we can show that jn−4(f)(b) = jn−3(f)(b) = jn−2(f)(b) = . . . = b
(because for large enough k and set f , jk(f)(b) = b); all elements of A
are (n− 4)-symmetric with respect to set permutations. If we choose maps
f = jk(g) which satisfy the support conditions for b, we discover further that
each element b of A is actually (n−4)-symmetric with some support, but the
support may depend on b. Finally, if all elements of a set A are n-symmetric
with the same support (m, a), it is clear that ιdA will be symmetric, so A
will be strongly cantorian (and any class with this property will also be a
strongly Cantorian set).

Observation 3.44. It appears that it ought to be possible to frame an
additional combinatorial assumption about setlike permutations under which
we should be able to show that each element b of A is (n−4)-symmetric with
the same support as ιdA, which will imply further that every subclass of a
strongly cantorian set will be a strongly Cantorian set (an appealing result
which strengthens NF in useful ways). Note that the strongly cantorian set



20 M. Randall Holmes

of Frege naturals does have uniform trivial support (1, ∅) for the 2-symmetry
of all of its elements, so every subclass of the natural numbers is a set in this
theory (this is a very strong additional axiom in the context of NF ).

Axiom 3.45. (Axiom Candidate) Let m be a Zermelo natural and a a finite
class satisfying jm(f)(a) = a for every set permutation f . If jn(f)(x) =
jn+1(f)(x) for all setlike permutations f such that jm(f)(a) = a, then
jn(f)(x) = x for all such setlike permutations f .

This candidate axiom would imply that all subclasses of strongly canto-
rian sets are sets. It is an assumption about rigidity (it excludes the existence
of certain kinds of external automorphisms of sets).

We discuss the status of choice. Because we have NF , we know that the
axiom of choice (in a version phrased in terms of sets) must be false. What
is different here is that it is entirely natural that choice be false in a system
with symmetric comprehension; Specker’s rather strange argument to this
effect in NF does not need to be invoked.

Theorem 3.46. The axiom of choice is false (when stated in terms of sets).

Proof. Consider the set permutation (xy) which sends x to y, y to x and
fixes everything else, where x 6= y are sets. Suppose there is a set well-
ordering of the universe (this would follow from any of the usual forms of
the axiom of choice; the standard equivalences between forms of the axioms
of choice (in stratified forms) hold in NF ). The pair 〈ιn(x), ιn(y)〉 would
be sent to 〈ιn(y), ιn(x)〉 by the action of jn+3((xy)), so the supposed well-
ordering could not be n-symmetric with respect to set permutations for any
n, and there can be no set well-ordering of the universe.

Observation 3.47. Nothing appears to prevent the existence of a class well-
ordering of the universe (subclasses of whose domain would have minimal
elements – not necessarily subsuperclasses). The existence of such a class
well-ordering combined with the assumption that all subclasses of s.c. sets
are sets would lead to the agreeable result that all s.c. sets could be well-
ordered. Nor does anything prevent the existence of a superclass true well-
ordering of the universe, but it does not appear that one could prove anything
useful about classes or sets using such a well-ordering.

Notice that, as in NF , the fact that we disprove Choice (easily in this
case) is interesting because it shows us that Infinity is true. The result about
equivalence of Frege and Zermelo natural numbers also implies infinity.
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4. Relations to Other Work

Thomas Forster has pointed out that “term models” of NF (models in which
all elements are actually set abstracts {x | φ}) would have the property that
all sets are symmetric (see [3]). He has not to my knowledge considered the
converse assertion that all symmetric classes are sets (which is tricky to state,
as this paper illustrates). Forster has in very interesting recent work (not yet
published – see [4]) investigated restricted versions of the standard set theory
ZF in which all sets are “hereditarily symmetric” in a sense related to but
not identical to the sense used here (he restricts the action of permutations
to Vω).

It is possible that the superclasses could be eliminated by adding a tran-
sitive closure operation to the logical language in which classes are defined.
It then appears to be possible to define n-symmetry of classes without the
need to appeal to superclasses. We have not favored this line of development
because the complication of the logic is considerable and we believe that it
is advantageous that the setlike permutations witnessing failures of sethood
do not themselves have to be classes. One should note that much of the
complication of this development is due to our proving the theorem that
unordered pairs of sets are sets; if Pairing were taken to be a separate axiom
the development would be simpler, but less philosophically gratifying.
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