
M. RANDALL HOLMES
POLYMORPHIC TYPE-CHECKING FORPRINCIPIA MATHEMATICAABSTRACT:A formal presentation of the rami�ed theory of types of the Prinipia Mathematia ofRussell andWhitehead is given (along with the simpli�ed theory of types of Ramsey). Thetreatment is inspired by but di�ers sharply from that in a reent paper of Kamareddine,Nederpelt and Laan. Algorithms for determining whether propositional funtions arewell-typed are desribed, inluding a omplete algorithm for the rami�ed theory of types,whih is unusual in requiring reasoning about numerial inequalities in the ourse ofdedution of type judgments. Software implementing these algorithms has been developedby the author, and examples of the use of the software are presented. The approah isompared with that of Kamareddine, Nederpelt and Laan, and some brief observationsare made about use of the type heker in a proof heker for the rami�ed theory of typesunder development. 1 INTRODUCTIONThis paper was inspired by areful reading of the paper [Kamareddine, et.al , 2002℄, where Kamareddine, Nederpelt and Laan present a formalizationof the rami�ed theory of types (hereinafter RTT) of [Russell andWhitehead,1967℄, the Prinipia Mathematia of Russell and Whitehead (hereinafterPM). It is surprising to disover on lose reading of PM that its theory oftypes (the oldest one) is nowhere given a omplete formal desription whihis up to modern standards of rigor. There are various formal systems oframi�ed type theory in the literature (the author has even presented one,based on earlier work of Marel Crabb�e, in [Holmes, 1999℄), but the onein [Kamareddine, et. al , 2002℄ is learly motivated by a desire to loselyimplement the notation of PM , although the approah to formalization ofreasoning about types they take is muh more modern.During our reading of [Kamareddine, et. al , 2002℄ we developed a typeheker [Holmes, 2003℄ for the formalized version of RTT presented in thatpaper. The approah we took to the type system in the ourse of thedevelopment of this heker was quite di�erent from the approah taken in[Kamareddine, et. al , 2002℄, and allows type-heking for a wider rangeof terms of the language of RTT than does the system of [Kamareddine,et. al , 2002℄. From the implementation of type heking we developed atthat time, it is possible to \reverse engineer" a formal treatment of the typesystem of RTT , whih we give here.Fairouz Kamareddine (eds.),Thirty Five Years of Automating Mathematis 1{43. 2003, Kluwer Aademi Publishers. Printed in the Netherlands.

2 M. RANDALL HOLMES2 INFORMAL PRESENTATION OF THE SYSTEM OF PRINCIPIAMATHEMATICAWe give an informal presentation of the notions of proposition and propo-sitional funtion as atually given in PM , in order to motivate the formal-ization of [Kamareddine, et. al , 2002℄. We feel that suh a presentation isneessary beause super�ial examination reveals that the system of [Ka-mareddine, et. al , 2002℄ is not idential to the system presented in PM .This setion is intended to provide support for the laim that the systemof [Kamareddine, et. al , 2002℄ (with ertain modi�ations whih we willindiate) is in fat an aurate formalization of the intentions of PM .At the outset, PM takes some seletion of the propositional onnetivesas primitive. We follow the original text and take negation and disjuntionas primitive; the last edition of PM suggests the use of the She�er stroke.It should be noted that PM uses propositional variables, a feature notfound in [Kamareddine, et. al , 2002℄, and we inlude propositional variablesin our formal language developed below. Propositional variables are notimportant for the investigation of type theory of propositional funtions(in fat, no propositional variable is allowed to appear in a propositionalfuntion in our implementation) but they turn out to be indispensible inpratial formalization of reasoning about propositions.The \atomi propositions" of PM are of the form Rn(ai1 ; : : : ; ain), inwhih Rn is an n-ary prediate of individuals and the aij 's are names ofindividuals. The type of individuals is the sole base type of the system ofPM . The system of [Kamareddine, et. al , 2002℄ allows the ase n = 0,whih would give us onstant propositions R0(); PM does not allow this.Our software allows one to hoose to allow or exlude 0-ary prediates.The \elementary propositions" of PM are formed by ombining atomipropositions with logial onnetives.Variables (taking individual values at this point) are now introdued.Variables (when representing individuals) an appear in the same ontextsas individual onstants. An elementary proposition ontaining variables isan ambiguous proposition (its meaning is not determined until values areassigned to the variables).The next step is to introdue propositional funtions . A propositionalfuntion is obtained by replaing eah variable x in an ambiguous elementaryproposition with x̂. The resulting expression denotes a funtion of as manyvariables as appear in it. The order in whih arguments are supplied to thefuntion is determined by the alphabetial order of the variables appearingin it (in our notation, this is determined by the order of the numerialindies of the variables). For example, in an arithmeti ontext x̂ < ŷ andb̂ > â would be the same propositional funtion (or at least would have thesame extension).PM de�nes quanti�ers in terms of propositional funtions. The sentene

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 3(x)(�x) ((8x:�(x)) in our notation) is obtained by applying an operationof \generalization" to the propositional funtion �x̂. The oÆial line inPM is that propositions in whih quanti�ed sentenes appear as argumentsof propositional onnetives do not really our: a system of ontextualde�nitions \de�nes away" sentenes whih apparently have this feature assentenes in prenex normal form. It would be extraordinarily inonvenientto atually take this view in a omputer implementation, and fortunatelyPM presents an alternative formulation of logial rules for quanti�ed sen-tenes whih allows the propositional funtions to take quanti�ed sentenesas arguments in the usual way. The one unfamiliar feature is that sinea propositional funtion must atually ontain its variable argument, thesope of a quanti�er must inlude a free ourrene of the quanti�ed vari-able for the sentene to be well-formed, and our software does enfore this.Our formalization does not otherwise aknowledge the dependene of quan-ti�ers on propositional funtions.Sine we take this view, we assoiate propositional funtions �x̂ withquanti�ed sentenes �x of arbitrary omplexity with free ourrenes of thevariable x.We now disuss higher-order variables and propositional funtions. Thenotation of PM for arbitrary ambiguous propositions, onsidered as propo-sitional funtions, is �x̂, �(x̂; ŷ), et. Parentheses are not used to enloseargument lists of length one, and argument lists of length 0 (yielding vari-able propositions �()) do not our, though they do our in the systemof [Kamareddine, et. al , 2002℄; permission to use suh expressions an beturned on or o� in our software. Note that variables � have been introduedrepresenting propositional funtions. An eentriity of the PM notationis that when �x̂ ours as an argument to a propositional funtion, it iswritten �x̂, not �. Quanti�ers over funtions are written (�); (9�), thoughthere is an assertion in PM that this is an abbreviation for (�x̂); (9�x̂).This penhant for omplex \variables" for propositional funtions seems tobe motivated by a desire to learly indiate the status (for PM) of propo-sitional funtions as \inomplete symbols".It seems to us that the implementation of this in more ompliated asesin PM is inorret. For example, PM tells us (p. 52 of [Russell and White-head, 1967℄) that F (�x̂) is an ambiguous expression for a funtion with asingle argument whih is itself a propositional funtion of a single individ-ual variable. We are then told that a variable representing a funtion ofthis kind would be written F (�̂x̂) (with the irumex over the �). Butthis seems wrong. The symbol �̂x̂ should be a onstant, the name for thepropositional funtion A suh that A(�x̂; a) = �a (this funtion is oftenmentioned as an example in PM , but notation for it is never given). SoF (�̂x̂) should represent the appliation of an ambiguous third-order fun-tion to this onstant seond-order funtion. A bound variable standing for

4 M. RANDALL HOLMESan arbitrary �rst order funtion should properly be written �x̂ (with theirumex over the entire omplex variable), and a variable seond-orderfuntion should be written F (�x̂). It is not our purpose here to reform thenotation of PM , as we atually prefer the notation of [Kamareddine, et. al ,2002℄, but this problem ought to be noted.Constant propositional funtions do not appear in applied position eitherin PM or in [Kamareddine, et. al , 2002℄. The reason for this is thata onstant propositional funtion is an expression with holes in it, and toapply the funtion is to substitute the arguments for the holes in the originalexpression. Our omputer implementation does support syntax for onstantfuntion appliation without substitution, but we will not use it here.Beause of the very limited use of notation for propositional funtions inPM , we do not see examples of onstant propositional funtions appearingas arguments to propositional funtions in PM , but it seems reasonablethat if one were to take the funtion F (x̂ = ŷ; a; b), and instantiate F with�̂(ẑ; ŵ), that one would obtain a = b. At any rate, this extension of notation(allowing onstant propositional funtions to appear as arguments) is foundin [Kamareddine, et. al , 2002℄.Simple variables do not always represent individuals. PM takes advan-tage of \systemati ambiguity" (what we would all \polymorphism"); thetype of variables whose type annot be determined by examination of anexpression may be arbitrarily omplex. But any variable whih appears inapplied position somewhere in a proposition or propositional funtion willappear with formal arguments whenever it appears as an argument to avariable funtion itself.We now disuss the types and orders of PM . PM does not anywhere givea formalized disussion of its type system; in fat, there is no notation fortypes in PM ! But the informal disussion is lear enough that the intentionsof the authors an be determined.Type is determined as follows. The simplest type is that of individuals.The type of a propositional funtion (abstrating out the order of the type,whih we will address in the next paragraph) is determined by the types ofits arguments.Every type has an order. The order of the type of individuals is 0. Theorder of a propositional funtion is one plus the maximum of the orders ofthe types of its arguments and the orders of the types of quanti�ed variables.It is the e�et of quanti�ation on order that makes order a nontrivialonept. The motivation of this onept is that a quanti�ed sentene isviewed as being in e�et an in�nite disjuntion or onjuntion over the typeof the quanti�ed variable: thus it is important to prevent the possibility ofa propositional funtion ontaining a quanti�er over its own type (or a moreomplex type), as this would lead to a formal irularity.Ramsey simpli�ed the type system of PM to eliminate the orders: this

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 5\simple theory of types" (ontrasted with the \rami�ed theory of types" ofPM) is disussed in [Kamareddine, et. al , 2002℄ and in this paper as well.Thus for any list of types of arguments to be supplied to a funtion, anin�nite sequene of funtion types of progressively higher order is obtained.PM gives a speial status to \prediative" funtions, whose order is theleast possible given the orders of the types of the arguments of the funtion,and whose arguments are all in their turn of prediative types. A speialnotation �!x is used for the appliation of funtions of prediative types.This notation is not used in [Kamareddine, et. al , 2002℄, but we introdueit here, with a generalization. For us, �!(x1; : : : ; xn) refers to a funtionof the arguments xi whose order is the least possible given the orders ofthe types of the xi's, but we do not require that the types of the xi's beprediative themselves for this notation to be used.We an now briey desribe the notation of [Kamareddine, et. al , 2002℄(our extension of this notation is formally desribed in the next setion). Inthe notation of [Kamareddine, et. al , 2002℄, all variables are simply letters(possibly with numerial suÆxes), and there are no irumexed variables.All ourrenes of variables within propositional funtions are to be under-stood as irumexed (bound as arguments of the propositional funtion).The only ambiguity this introdues is that a top-level expression for a propo-sition looks the same as the expression for the orresponding propositionalfuntion. This ambiguity exists only at the top level, beause propositionsdo not our as arguments to propositional funtions. It appears that aformalized version of the language of PM along the lines suggested above(with the orretion to sopes of irumexes) would be readily intertrans-latable with the language based on that of [Kamareddine, et. al , 2002℄whih we desribe formally in the next setion, mod oasional renamingsof bound variables due to the fat that a bound individual variable anda bound funtion variable in di�erent ontexts might take the same shapein this language and would have to be renamed before translation into theoriginal PM notation.3 PROPOSITIONS AS MERE SYNTAXThe logial world of PM is inhabited by individuals and propositional fun-tions . We usually abbreviate the phrase \propositional funtion" as \pf",following [Kamareddine, et. al , 2002℄. In this setion, we formally desribethe notation for propositions and pfs.Notation for individuals is simpliity itself: an individual is denoted byone of the symbols a1; a2; a3; : : : (in the omputer implementation, a1, a2,a3...).Before we present the notation for propositions, we need to introduevariables and primitive relation symbols. A variable is one of the symbols

6 M. RANDALL HOLMESx1; x2; x3; et. (x1, x2, x3... in the omputer implementation). (We allthese \general" variables on the few oasions when we need to distinguishthem from \propositional variables" introdued below.) A primitive relationsymbol is a string of upper-ase letters with a numerial subsript indiatingits arity (in the paper, R1 and S2 are primitive relation symbols: these wouldbe R1 and S2 in the omputer implementation).We note that we will freely use the word \term" in the sequel for any pieeof notation, whether propositional notation, the name of an individual, ora general variable.Now we present the de�nition of notation for propositions. The notionof free ourrene of a (general) variable in a proposition is de�ned at thesame time.In the system of [Kamareddine, et. al , 2002℄, any notation for a proposi-tion is also notation for a propositional funtion. It is neessary here to ex-lude propositional notations whih ontain propositional variables (whihdo not our in [Kamareddine, et. al , 2002℄). In PM (e.g., on p. 38 of [Rus-sell and Whitehead, 1967℄) it states learly that a proposition must ontaina free variable to be read as a propositional funtion, whih motivates theimplementation in our software of an option to exlude 0-ary relation sym-bols and pfs. If 0-ary pfs are exluded, a propositional notation will be apf notation i� it ontains no propositional variables and at least one freegeneral variable. If 0-ary pfs are permitted, the riterion is simply that thenotation ontain no propositional variable.propositional variable: A variable taken from p1; p2; p3 : : : is a propo-sition (p1, p2, p3... in the omputer implementation). This is apropositional variable. (There are no propositional variables in thesystem of [Kamareddine, et. al , 2002℄, but there are in PM). No(general) variables our, free or otherwise, in a propositional vari-able.atomi proposition: A symbol Rn(v1; : : : ; vn) onsisting of a primitiverelation symbol with arity n followed by a list of n arguments vi, eahof whih is either a variable xji or an individual onstant aji , is anatomi proposition. (R0() is also an atomi proposition in the systemof [Kamareddine, et. al , 2002℄, and for us if we admit 0-ary pfs). Thefree ourrenes of variables in an atomi proposition are exatly thetypographial ourrenes of variables in it.negation: If P is a proposition, then :P (�P in the omputer implemen-tation) is a proposition, the negation of the proposition P . The freeourrenes of variables in :P are preisely the free ourrenes ofvariables in P .binary onnetives: If P and Q are propositions, then (P _Q) is a propo-sition. Disjuntion is the only primitive binary propositional onne-

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 7tive in PM , but we will allow use of other onnetives: (P ! Q),(P ^ Q), (P � Q) with the usual meanings. In the omputer imple-mentation, propositional onnetives are strings of lower ase letters:(P v Q), (P implies Q), (P and Q), (P iff Q). The free our-renes of variables in (P _ Q) are the free ourrenes of variablesin P and Q; the rule is the same if a di�erent binary propositionalonnetive is used.quanti�ers: If P is a proposition in whih the variable xi ours free (thisstipulation is what requires us to de�ne freedom of variables at thesame time as syntax of propositions), (8xi:P) is a proposition (thisis written [xi℄P in the omputer implementation). The existentialquanti�er (9xi:P) (written [Exi℄P in the omputer implementation)an be introdued by de�nition: the omputer allows any string ofupper-ase letters to be used as a quanti�er, and other quanti�ersould be introdued. The free ourrenes of variables in (8xi:P) arethe free ourrenes of variables other than xi in P ; the rule would bethe same for any other quanti�er.In [Kamareddine, et. al , 2002℄, the struture of the typing algorithmrequired the attahment of expliit type labels to variables bound byquanti�ers. In our system, this is not neessary. This is loser tothe situation in PM , where no type indies appear (though numerialindies representing orders do appear oasionally).pf appliation (\matrix" and general): If xi is a variable and we aregiven an argument list A1; : : : ; An in whih eah Ai is of one of theforms aji (an individual onstant), xji (a variable) or Pi (notation fora proposition, suitable to represent a pf), then xi(A1; : : : ; An) andxi!(A1; : : : ; An) are propositions. In the latter notation, the exlama-tion point indiates that the \order" of the type of the variable xi isas low as possible: this will be lari�ed when types and orders aredisussed. The notation xi!(A1; : : : ; An) does not appear in the paper[Kamareddine, et. al , 2002℄; its use in this paper is a generalizationof the use of a similar notation for \matries" (prediative funtions)in PM . xi() is also a proposition in the system of [Kamareddine, et.al , 2002℄ (the variable xi represents a proposition in this ase); xi()and xi!() are propositions for us as well if we admit 0-ary pfs. Thefree ourrenes of variables in xi(A1; : : : ; An) or xi!(A1; : : : ; An) arethe head ourrenes of xi and those Ai's whih are variables: notearefully that the free ourrenes of variables in those Ai's whihare propositional notations are not free ourrenes of variables inxi(A1; : : : ; An) or xi!(A1; : : : ; An).ompleteness of de�nition: All propositional notations are onstrutedin this way.

8 M. RANDALL HOLMESAs usual, an ourrene of a variable in a proposition whih is not free issaid to be bound. Note that a variable xi is not a propositional notation.There are no binders in notation for a propositional funtion, whih willgive our treatment a somewhat unfamiliar avor. Sine we do not havehead binders to determine the order of multiple arguments, we allow theorder of the indies of the variables (whih we may refer to oasionally as\alphabetial order") to determine the order in whih arguments are to besupplied to the funtion.We refer to the atomi propositions and the pf appliation terms as \log-ially atomi" (propositional variables are also logially atomi, but they donot our in pf notations), and to other terms as \logially omposite".4 THE DEFINITION OF SUBSTITUTION AND ITS FAILUREWe now give the reursive de�nition of simultaneous substitution of a list ofindividuals, variables and/or pfs Ak for variables xik in a proposition P , forwhih we use the notation P [Ak=xik ℄. The lauses of the de�nition followthe syntax. It is required that the subsripts ik be distint for di�erentvalues of k.propositional variable: pj [Ak=xik ℄ = pj .atomi propositions: Let Rn(v1; : : : ; vn) be an atomi proposition. Foreah vi and index k, de�ne v0i as Ak if vi is typographially the same asxik ; de�ne v0i as vi if it is not typographially the same as any xik . Ifany v0i is a propositional funtion, Rn(v1; : : : ; vn)[Ak=xik ℄ is unde�ned;otherwise Rn(v1; : : : ; vn)[Ak=xik ℄ is de�ned as Rn(v01; : : : ; v0n).negation: (:P)[Ak=xik ℄ = :(P [Ak=xik ℄)binary onnetives: (P _ Q)[Ak=xik ℄ = (P [Ak=xik ℄ _ Q[Ak=xik ℄). Therule is the same for any binary propositional onnetive.quanti�ation: Let (8xj :P) be a quanti�ed sentene (the rule is the samefor any quanti�er). De�ne A0k as xj in ase ik = j and as Ak otherwise.Then (8xj :P)[Ak=xik ℄ is de�ned as (8xj :P [A0k=xik ℄).pf variable appliation: Let xj(V1; : : : ; Vn) or xj !(V1; : : : ; Vn) be a propo-sition built by pf appliation. De�ne B0 for any notation B as Ak if Bis typographially xik and as B otherwise. xj(V1; : : : ; Vn)[Ak=xik ℄ isto be de�ned as x0j(V 01 ; : : : ; V 0n) and xj !(V1; : : : ; Vn)[Ak=xik ℄ is to bede�ned as x0j !(V 01 ; : : : ; V 0n) exept in the ase where x0j is a pf notationQ: in this ase something rather more ompliated happens. It willbe unde�ned unless there are preisely n variables whih our free inQ. If there are n variables whih our free in Q, de�ne tk so that

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 9xtk is the kth free variable in Q in alphabetial order. Then de�nexj(V1; : : : ; Vn)[Ak=xik ℄ or xj !(V1; : : : ; Vn)[Ak=xik ℄ as Q[V 0k=xtk ℄.There is a serious diÆulty with this \de�nition". Consider :x1(x1),whih is a pf by our urrent de�nitions. Substitute :x1(x1) for the variablex1 in the proposition :x1(x1) itself. We will obtain the negation of theresult of replaing x1 with :x1(x1) in x1(x1). Giving :x1(x1) the nameR for the moment, we see that the result of the latter substitution will beR[R=x1℄; but this is exatly the substitution we started out trying to make,so we have an in�nite regress. This shows that the proposed \de�nition" ofsubstitution is essentially irular { in the last lause, there is no guaranteethat the instane of substitution Q[V 0k=xtk ℄ to be arried out is \simpler" inany way than the original substitution x0j(V1; : : : ; Vn)[Ak=xik ℄ being de�ned,and our example shows that it need not be.It is hoped that the reader will notie that this is essentially Russell'sparadox of naive set theory. Our solution will be the oÆial solution ofPM : we will impose a type system, under whih the term :x1(x1) willfail to denote a pf, and the problem will disappear. For the moment, wewithdraw the de�nition of substitution; we will return to it after we havepresented the type system.The self-ontained approah to the de�nition of substitution taken heremay be ontrasted with the rather elaborate invoation of �-alulus in[Kamareddine, et. al , 2002℄. Though our de�nition appears to have failedat this point, the type system will allow us to give the de�nition above as alegitimate indutive de�nition. The reason we an do this and the authorsof [Kamareddine, et. al , 2002℄ annot is that their de�nition of the typingalgorithm depends on the notion of substitution, and ours does not. (Thede�nition of our type algorithm does rely on the notion of substitution intonotations for types, but the de�nition of substitution into type notationsdoes not present suh logial ompliations).5 THE SIMPLE THEORY OF TYPESWe follow [Kamareddine, et. al , 2002℄ in presenting the simple theory oftypes without orders �rst, though historially it was presented by Ramseyas a simpli�ation of the rami�ed theory of types of PM .The base type of the system of PM is the type 0 inhabited by individu-als. (Nothing prevents the adoption of additional base types, or indeed theavoidane of ommitment to any base type at all).All other types are inhabited by propositional funtions. In the simpletheory of types, the type of a pf is determined preisely by the list of typesof its arguments.We introdue notation for simple types:

10 M. RANDALL HOLMESIndividuals: 0 is a type notation.Propositions: () is a type notation (for the type of propositions).Propositional Funtions: If t1; : : : ; tn are type notations, (t1; : : : ; tn) isa type notation. (If 0-ary pfs are exluded, no omplex type will have() as a omponent; this will be enfored by requiring ti 6= () here).Variable Types: For eah variable xi, we provide a type notation [xi℄.(This notation is an innovation for this paper: it represents an un-known (polymorphi) type to be assigned to xi; these types may alsobe alled \polymorphi types").Completeness of De�nition: All simple type notations are derived inthis way.No Nontrivial Identi�ations: Constant types (those ontaining no vari-able types as omponents) are equal preisely if they are typographi-ally idential.As is noted in [Kamareddine, et. al , 2002℄, there is no notation for typesin PM : this notation is apparently due to Ramsey (exept for our innovationof variable types, whose purpose will beome lear below).Our aim in this essay is to avoid the neessity of assigning types overtlyto variables, whih is truer to the approah taken in PM itself. It is usefulto onsider what a system with expliit type assignment would look like,though.The type assignment is represented as a partial funtion from terms totypes: �(xi) is the type to be assigned to xi, and more generally �(t) is thetype to be assigned to the individual onstant, variable, or propositionalfuntion t. Types in the range of � are onstant types (they ontain notype variables [xi℄). We require that bound variables be typed as well asfree variables, and identity of variables does for us imply identity of typeregardless of free or bound status. We stipulate that every variable is inthe range of � and that the inverse image of eah type under � ontains in-�nitely many variables: this has the same e�et as providing in�nitely manyvariables labelled with eah type. The following rules simultaneously tellus whih terms are typable (have values under �) and how to ompute thevalue of � if there is one. Funtions � satisfying these rules are alled \typefuntions on P", where P is a �xed proposition or propositional funtion.individuals: If xi appears as an argument in an atomi subproposition ofP , �(xi) = 0. �(ai) = 0 for any individual onstant ai.propositional funtions: If Q is a propositional funtion appearing asa subterm of P , every subterm of Q has a value under � , and the

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 11n free variables of Q, indexed in inreasing order, are xik , �(Q) =(�(xi1); : : : ; �(xin)). If Q ontains no free variables, then �(P) = ().variable appliation: If xj(A1; : : : ; An) or xj !(A1; : : : ; An) is a subtermof P , then �(xj) = (�(A1); : : : ; �(An)).These rules have to be understood as additional restritions on whihterms are to be taken as well-formed: a term P is to be onsidered well-formed i� there is a type funtion � on P . Notie that the value of � at everyterm (or its lak of value) is ompletely determined by the values of � atvariables. The proess desribed terminates by indution on the strutureof propositional notations: to ompute the type assigned to any notationother than a variable or individual onstant (or assess its typability), weappeal only to the types assigned to proper subterms of that notation, andwe are given types of variables and individual onstants at the outset.A weakening of these riteria for well-typedness is possible if we take intoaount the possibility of renaming bound variables. Variables with thesame typographi shape bound by di�erent binders ould reasonably be al-lowed to have di�erent types. This is implemented to a limited extent in theSTT implementation: when a pf argument is typed, all information abouttypes of variables appearing in the pf is disarded, unless the polymorphitype of the variable appears in the type of the pf (in whih ase its typewill be uni�ed with types of the same variable in the larger ontext). Thismeans that the same variable an appear with two di�erent types, if one isbound inside a pf argument in whih the other is not bound. Suh e�etsannot be ahieved with quanti�ed variables (variables bound by di�erentquanti�ers and bound in the same pf arguments must be assigned the sametype). It turns out to be inonvenient to implement this in RTT : all our-renes of the same variable, bound or free must have the same type. Thereis a proedure in the software whih will rename bound variables in suh away that any variables whih an be distint will be distinguished; if thisfuntion is used on a pf before it is typed, one gets the e�et of the mostliberal approah to typing bound variables.We now proeed to develop a system for expressing and reasoning abouttype assignments to subterms of pfs, adopting rules on the basis of theirvalidity for an intended interpretation in terms of type funtions.There are four kinds of type judgments. In the following, P stands fora propositional or pf notation, t; u stand for types (variable types [xi℄ arepermitted to appear as types and as omponents of omplex types) and xistands for a general variable.ill-typedness: \P is ill-typed" is de�ned as \there is no type funtion �on P".propositional funtion type assignment: \P has type t" means \for

12 M. RANDALL HOLMESall type funtions � on P , �(P) = t", where any type [xi℄ appearingin t is interpreted as �(xi).variable type assignment: \xi has type t in P" means \for all type fun-tions � on P , �(xi) = t", where any type [xj ℄ appearing in t is inter-preted as �(xj).type equality: \t = u in P" is de�ned as \for all type funtions � on P ,t = u", where any type [xj ℄ appearing in t or u is interpreted as �(xj).We now develop rules for dedution about type judgments, showing thatthe rules are valid in the intended interpretation.We begin with the observation that the onditions de�ning a type fun-tion on P depend only on the appearanes of variables in logially atomisubterms of P : these onditions assign types to arguments appearing inatomi propositions, to propositional funtions, whih an only appear asarguments of propositional funtion appliation terms, and to the head vari-ables of propositional funtion appliation terms. It follows immediatelyfrom this that � is a type funtion on P under preisely the same ondi-tions under whih it is a type funtion on :P or on (8xi:P) (if the latter iswell-formed), sine these terms ontain preisely the same logially atomisubterms. Further, it follows that any type funtion on (P _ Q) is also atype funtion on P and on Q, sine it will satisfy the onditions on logiallyatomi subterms of P and Q, sine the set of logially atomi subterms of(P _ Q) is the union of the set of logially atomi subterms of P and theset of logially atomi subterms of Q.These fats an be expressed in terms of type judgments:negations: :P is ill-typed i� P is ill-typed. xi has type t in :P i� xi hastype t in P .quanti�ation: (8xi:P) (if well-formed) is ill-typed i� P is ill-typed. xjhas type t in (8xi:P) i� xj has type t in P .binary propositional onnetives: If P or Q is ill-typed, (P _Q) is ill-typed (note that this is equivalent to \if there is a type funtion on(P _Q) there is a type funtion on P and a type funtion on Q"). Ifxi has type t in P or xi has type t in Q, then xi has type t in (P _Q).(Note that if �(xi) = t must be true for any type funtion � on somesubterm of P , it must be true for any type funtion � on P .)There are three kinds of ourrenes of variables in logially atomi sub-terms; the ways in whih these ourrenes are typed are summarized bythe following rules:individual variables: If xi = Ak in Rn(A1; : : : ; An), then xi has type 0in Rn(A1; : : : ; An).

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 13applied variables: If Ai has type ti for eah i, then xj has type (t1; : : : ; tn)in xj(A1; : : : ; Ak) or xj !(A1; : : : ; Ak).argument variables: xi has type [xi℄ in P for any propositional funtionP (this expresses the fat that the appearane of a variable as anargument of a pf appliation term does not onstrain its type at all).In this way a possibly variable type may be assigned to eah ourreneof a variable. This is alled the \loal" type of the ourrene. However,more than one typographially di�erent type may be assigned to the samevariable. For example, x1 is assigned type 0 and type [x1℄ in R1(x1)_x2(x1).Di�erent types assigned to the same variable will of ourse be equal. Wean express this in terms of type judgments.multiple types: If xi has type t in P and xi has type u in P then t = uin P .variable type equations: If [xi℄ = t in P then xi has type t in P .De�nition: We assign an integer arity to eah type whih is not a typevariable. 0 has arity �1. () has arity 0. (t1; : : : ; tn) has arity n. Notethat a type may have variable type omponents, but it will still havearity if it is not itself a type variable. Note also that types whih areequal will have equal arity if their arity is de�ned.type distintion: If t and u eah have arity and have distint arities andt = u in P , then P is ill-typed.absurdity: If P is ill-typed, then P has type t, t = u in P and xi has typet in P for any t, u, and xi (this is obviously orret under the intendedinterpretation { we need it for a ompleteness result).omponentwise equality: If (t1; : : : ; tn) = (u1; : : : ; un) in P , then wean infer ti = ui in P for eah i.type substitution: If xi has type t in P and xj has type u in P , then xjhas the type u[t=[xi℄℄ obtained by substituting t for all ourrenes of[xi℄ in u.A onsideration related to type substitution is that no type an be ill-founded: the type of a variable xi annot have [xi℄ as a proper omponent.ill-foundedness: If xi has type t in P and t[t=[xi℄℄ 6= t, then P is ill-typed.Finally, we need the rule for typing propositional funtions.propositional funtion type: If the variables free in P , listed in orderof inreasing index, are (xi1 ; : : : ; xin) and xik has type tk for eah k,then P has type (t1; : : : ; tn).

14 M. RANDALL HOLMESAn additional rule is stated whih we do not use in the omputer im-plementation for simple type theory (though we do use it in rami�ed typetheory), but whih is needed for a ompleteness result for type funtions aswe have de�ned them.type inheritane: If xi has type t in Ak, then xi has type t in either ofxj(A1; : : : ; An) or xj !(A1; : : : ; An).It should be lear from our disussion that eah of these rules is sound forthe intended interpretation. We will prove that this set of rules is ompletefor the intended interpretation as well.Theorem: For eah propositional funtion P , there is a type t suh that \Phas type t" is deduible from the rules above and the types possibleas values �(P) for a type funtion � on P are preisely the typesobtainable by substituting an arbitrary type for eah type variableappearing in t.Proof of Theorem: We desribe the omputation of the type t. The ideais to onstrut a set of judgments \xi has type ti" deduible using thetype judgment rules whih satis�es all the rules for a type funtionexept for possibly ontaining type variables: arbitrary instantiationof the type variables then yields a true type funtion.Begin the onstrution of the set of judgments by omputing the \lo-al" type of eah ourrene of eah variable xi. We prove the theoremby strutural indution: we assume that eah pf argument of a pf ap-pliation subterm of P an be assigned a type satisfying the onditionsof the theorem (this is needed to ompute the \loal" types of headvariables of pf appliation terms).The only way in whih this an fail to indue a type funtion on P(mod instantiation of type variables with onrete types) is if morethan one type is assigned to the same variable. We show how to resolvesuh situations.If any variable is assigned types of di�erent arities, the proess ter-minates with the judgment that P is ill-typed. If any variable xi isassigned a type whih ontains [xi℄ as a proper omponent, the proessterminates with the judgment that P is ill-typed.If xi is assigned any type t whih is not a variable type (inluding om-posite types with variable omponents) replae all ourrenes of [xi℄in types assigned to other variables with the type t. If xi is assignedtype [xj ℄ (j 6= i), replae all ourrenes of the type xminfi;jg in typesassigned to all variables with the type xmaxfi;jg. This is justi�ed bythe type substitution rule. In the proess desribed below, arry outthese substitutions whenever a new type assignment is made. Notie

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 15that suh a substitution will our at most one for any given variablexi, sine it eliminates the target type everywhere. Of ourse, if [xi℄ isintrodued as a proper omponent of the type of xi, terminate with ajudgment of ill-typedness.If xi is assigned types [xj ℄ and t in P , add the judgment \xj has type tin P" and eliminate the type assignment \xi has type [xj ℄ in P" (notethat all ourrenes of [xj ℄ will then be eliminated if t is not a typevariable). In one speial ase we proeed di�erently: if xi is assignedtypes [xj ℄ and [xk ℄, we assign xi, xj , and xk the type xmaxfi;j;kg.If xi is assigned types (t1; : : : ; tn) and (u1; : : : ; un) in P , the judg-ments ti = ui follow for eah relevant i. From these equality judg-ments ontinue to dedue further equality judgments in the same way.This proess will terminate with either a judgment that P is ill-typedor a �nite nonempty set of nontrivial judgments of the form [xk℄ = vk,eah of whih has \xk has type vk" as a onsequene, whih we addto our list of type assignments. Assign to xi the type whih results ifall these types xk are replaed with the orresponding vk's in either ofthe two types being reoniled (the same type results in either ase).Note that no new assignment to xi an result, beause [xi℄ annot bea omponent of the type assigned to xi unless P is ill-typed.This proess must terminate. Eah step of the proess desribed elim-inates at least one variable type [xi℄ from onsideration or terminateswith a judgment of ill-typedness.When the proess terminates, we will either have onluded that P isill-typed (and this judgment will be honest beause the rules are soundfor the intended interpretation) or we will have obtained a set of typeassignments to the variables appearing in P satisfying the onditionsfor a type funtion: any instantiation of type variables appearing inthese types with onstant types will give a type funtion on P .It is important to note that this is a type algorithm based on the quitestandard approah of type uni�ation implemented, for example, inthe type heking of the omputer language ML (a standard refereneis [Milner, 1978℄).The algorithm atually implemented in our software for simple type the-ory di�ers from the theoretial algorithm in not using the rule deduingtypes of variables from types of their ourrenes in propositional funtionarguments. This means that the type of a variable xi in a propositional fun-tion argument will only interat with the types of variables in the largerterm if the type [xi℄ appears as a omponent type of the type of the ar-gument. This is legitimate, beause we ould arrange for all variables ofthe propositional funtion argument (being bound) to be renamed to avoid

16 M. RANDALL HOLMESollisions with types of variables appearing elsewhere. However, variableswhose polymorphi type appears in the type assigned to the argument arenot onsidered as being renamed.We an now salvage the de�nition of substitution given above.Convention: We stipulate heneforth that propositional notations are well-formed i� they are well-formed under the original de�nition and thejudgment \P is ill-typed" annot be dedued using the algorithm givenabove, in the version whih impliitly allows renaming of bound vari-ables appearing in pf arguments but not in their polymorphi types.Theorem: P [Ak=xik ℄, de�ned as above, will be well-de�ned as long as thereis a �xed set of substitutions � of types for polymorphi type variablessuh that the type of eah Ak is the result of applying � to the typeof xik in P .Proof of Theorem: We only need to onsider the ase in whih a propo-sitional funtion Q is substituted for the variable xj in either of theterms xj(A1; : : : ; An) or xj !(A1; : : : ; An).We reprodue the problemati lause from the de�nition of substitu-tion.\Let xj(V1; : : : ; Vn) or xj !(V1; : : : ; Vn) be a proposition built by pfappliation. De�ne B0 for any notation B as Ak if B is typograph-ially xik and as B otherwise. We de�ne xj(V1; : : : ; Vn)[Ak=xik ℄ asx0j(V 01 ; : : : ; V 0n) and xj !(V1; : : : ; Vn)[Ak=xik ℄ as x0j !(V 01 ; : : : ; V 0n) exeptin the ase where x0j is a pf notation Q: in this ase something rathermore ompliated happens. It will be unde�ned unless there are pre-isely n variables whih our free in Q. If there are n variableswhih our free in Q, de�ne tk so that xtk is the kth free variablein Q in alphabetial order. Then de�ne xj(V1; : : : ; Vn)[Ak=xik ℄ orxj !(V1; : : : ; Vn)[Ak=xik ℄ as Q[V 0k=xtk ℄."The type of the onstant propositional funtion Q being substitutedfor xj in P is the image under the �xed substitution � of the type ofxj in P , and so is the image under � of a proper omponent of thetype of P . Thus, by a strutural indution on types, the substitutionQ[V 0k=xtk ℄) into Q used to de�ne the substitution into P sueeds,beause the image under � of the type of Q is simpler than the imageunder � of the type of P . Note that beause P is well-typed, thatsubstitution Q[V 0k=xtk ℄) will meet the typing onditions we require forsubstitutions: the fat that Q has the same type that xj has in P ,eah V 0k has the same type as Vk in P , and xj(V1; : : : ; Vn) is a subtermof P is suÆient to see this.So the problem of substitution is solved by the adoption of simple typetheory.

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 176 THE RAMIFIED THEORYThe motivation behind the rami�ed theory is as follows. The type of apropositional funtion in STT is determined by the types of its arguments,and all types of its arguments must be simpler than its type: understandingthe meaning of the pf involves understanding the entire range of the typesof its arguments, so it annot without irularity be an item in one ofthose types. But it an further be said that understanding the meaningof a pf involves understanding the entire type over whih any quanti�edvariable appearing in the funtion ranges, so the type of a pf must be moreomplex than that of any variable over whih quanti�ation ours in thepf. More onretely, Russell suggests in PM that a quanti�ed sentene isto be understood as expressing an in�nitary onjuntion or disjuntion inwhih sentenes referring to every objet of the type quanti�ed over mustour. If quanti�ed sentenes are to be interpreted in this way, then theappearane of a quanti�ed variable in a pf with the same type as the pfor a more omplex type would lead to formal irularity on expansion toin�nitary form.The restrition is enfored in RTT by adding to eah type a new feature,a non-negative integer alled its \order". The order of type 0 (the type ofindividuals) is 0 (zero). The type () of propositions in simple type theoryis partitioned into types ()n for eah natural number n, where the order nwill be the least natural number greater than the order of the type of anyvariable whih ours in the proposition (inluding quanti�ed variables). Apf notation P ontaining n free variables xik (listed in inreasing order) withtypes tk will be assigned type (t1; : : : ; tn)m, where m is the smallest naturalnumber greater than the order of any of the types tk and the order of thetype of any variable quanti�ed in P . A similar rule applies to the typingof head variables xi in expressions xi(A1; : : : ; An) or xi!(A1; : : : ; An): thetype of xi will be (t1; : : : ; tn)r where eah tk is the type of Ak , and theorder r is larger than the orders of the tk's; in the term xi!(A1; : : : ; An),the order r must be the smallest order larger than all orders of tk's.We begin the formal treatment with the de�nition of formal polymorphiorders.natural number: A natural number n is a polymorphi order.polymorphi variable: For eah variable xi, the symbol jxij is a poly-morphi order.addition: The formal sum of a polymorphi order and a natural numberis a polymorphi order.maximum: The formal maximum of two polymorphi orders is a polymor-phi order.

18 M. RANDALL HOLMESsimpli�ation: Addition is understood to be ommutative and assoiative.Eah sum appearing in a polymorphi order is of the form jxij +m:two polymorphi variables are never added, so there is no need formore omplex sums.Maximum is understood to be ommutative and assoiative. Theidentity max(a; b) + = max(a+ ; b+) an be used to onvert anypolymorphi order to a maximum of sums. No more than one naturalnumber not added to a polymorphi order needs to appear in suha maximum of sums (beause max(m;n) an be simpli�ed to eitherm or n). No more than one sum involving the same jxij needs toappear, sine max(jxij +m; jxij + n) = jxij +max(m;n). So there isa unique anonial form for polymorphi orders, the maximum of asingle natural number (if the natural number is 0 it is omitted) anda list of expressions jxij + m (if m is 0 it is omitted) presented inasending order of the parameter i. Adding a natural number to suha standard form and taking the maximum of two suh standard formsare readily omputable operations.order of polymorphi orders: If m and n are polymorphi types, we saym > n when max(m;n+1) = m. This is not a total order, of ourse.substitution into orders: The result u[m=jxij℄ of substituting a polymor-phi order m for the polymorphi order jxij in a polymorphi order uis the result of replaing the ourrene of jxij in u (if there is one:otherwise the result of the substitution is u) with m, then simplifying.Substitution into orders is needed to handle hanges in order whihtake plae when a more detailed type is substituted for a polymorphitype variable.Now we are in a position to de�ne rami�ed types (and their orders, si-multaneously).individuals: 0 is a rami�ed type of order 0.propositions: If n is a polymorphi order, ()n is a rami�ed type of ordern.pfs: If t1; : : : ; tn are rami�ed types and m is a polymorphi order greaterthan the order of any of the types tk, then (t1; : : : ; tn)m is a rami�edtype of order m.polymorphi types: For eah variable xi, there is a rami�ed type [xi℄ oforder jxij.There are two possible ways of understanding the relationships betweenthe orders. Expliit assertions in PM support the idea that any two types

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 19must be disjoint, and so two types (t1; : : : ; tn)r and (t1; : : : ; tn)s with rnot equal to s must be disjoint. This is the view we take here. There isa possible alternative approah, taken up by other workers (see [Peressini,1997℄), that (t1; : : : ; tn)r � (t1; : : : ; tn)s holds when r < s. We do not takethis view, but we found onsideration of this alternative view very useful inonstruting early versions of the type inferene algorithm for RTT .We present the rules for a term-typing funtion � as above. Notie thathere the orders will be �xed non-negative integers: polymorphi orders ap-pear in our algorithm beause the struture of terms gives insuÆient in-formation to �x orders preisely in some ases.individuals: If xi appears as an argument in an atomi proposition, �(xi) =0. �(ai) = 0 for any individual onstant ai.pfs: If P is a propositional funtion and the n free variables of P , indexedin inreasing order, are xik , �(P) = (�(xi1); : : : ; �(xin))m, where mis one greater than the maximum of the orders of the types of thevariables appearing in P (free or bound, outside proper propositionalfuntion arguments). If P ontains no free variables, then �(P) = ()m,where m is one greater than the maximum of the orders of the typesof the variables quanti�ed over in P .pf appliation terms: If xj !(A1; : : : ; An) is a term, then, stipulating thatm = 1 +maxf�(A1); : : : ; �(An)g, �(xj) = (�(A1); : : : ; �(An))m.If xj(A1; : : : ; An) is a term, then �(xj) = (�(A1); : : : ; �(An))m, forsome order m stritly larger than the order of eah �(Ak).Notie that in the rami�ed theory there is an additional ase where thetype of a variable annot be rigidly dedued from its ontext: as before, thetype of a variable argument to a variable propositional funtion is polymor-phi, and in addition the order of the type of xj in a term xj(A1; : : : ; An)only has a lower bound, not a �xed value.As above, we will regard a pf as well-typed when there is a type funtion� whih assigns a type to that pf. Some pfs will have many possible types,as above, whih will be indiated by the appearane of type variables [xi℄(and order variables jxij) in the type resulting from the algorithm. Asabove, a more liberal type algorithm ould be obtained by requiring thatbound variables be renamed to be distint from one another and from freevariables when this preserves meaning, but this is not implemented in oursoftware. There is a tool whih will rename all bound variables in suh away that they are typographially distint whenever possible; this an beapplied before typing to get the most general typing onditions for a pf.We now desribe the rules of type inferene for RTT . We inlude onlythose lauses whih di�er from the orresponding lauses in the STT algo-rithm.

20 M. RANDALL HOLMESapplied variables: If Ai has type ti for eah i, and the order of tk is okfor eah k, then xj has type (t1; : : : ; tn)r in xj !(A1; : : : ; Ak), where ris 1+max(o1; :::; ok), and xj has type (t1; : : : ; tn)s in xj(A1; : : : ; Ak),where s is max(jxj j; o1 + 1; : : : ; on + 1). (In RTT , we distinguish thetwo kinds of pf appliation term).De�nition: We assign an integer arity to eah type whih is not a typevariable. 0 has arity �1. () has arity 0. (t1; : : : ; tn)m has arity n.Note that a type may have variable type omponents, but it will stillhave arity if it is not itself a type variable. Note also that types whihare equal will have equal arity if their arity is de�ned. (We reproduethis de�nition beause of the mention of order, though order does nota�et arity).omponentwise equality (identi�ation of omponents): If we have(t1; : : : ; tn)m1 = (u1; : : : ; un)m2 in P , then ti = ui in P for eah i.It is important to note that substitution of a type t for a type variable[xi℄ also has the e�et of substituting the order of t for all ourrenes ofthe order variable jxij.ill-foundedness: If xi has type t in P and t[t=[xi℄℄ 6= t, then P is ill-typed.(Reall that the omputation of t[t=[xi℄℄ inludes the redution of itsorder to standard form; this resolves the apparent irularity of thease in our algorithm where we assign a variable xi a type t whoseorder is a maximum of orders inluding jxij; in t[t=[xi℄℄, the order of tis apparently modi�ed by the replaement of jxij with the entire orderof t, but on simpli�ation the order of t is restored to its original form,so in fat t[t=[xi℄℄ = t in this ase and no judgment of ill-typednessresults.)As above, we need the rule for typing propositional funtions. This ruleneeds to take into aount the e�et of quanti�ed variables on order.propositional funtion type: If the variables free in P , listed in orderof inreasing index, are (xi1 ; : : : ; xin), and the variables quanti�edin P are (xin+1 ; : : : ; xim), xik has type tk for eah k and type tkhas order ok for eah k, then P has type (t1; : : : ; tn)r, where r =1 +max(o1; : : : ; om).We need the following rule and we do not subsequently relax it as insimple type theory.type inheritane: If xi has type t in Ak, then xi has type t in bothxj(A1; : : : ; An) and xj !(A1; : : : ; An).

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 21It should be lear from our disussion that eah of these rules is soundfor the intended interpretation. However, this set of rules is not omplete.We now introdue the notion of \bounding variable" of an order.De�nition: If an order n is presented in the standard formmax(n0; n1 + jxi1 j; : : : ; nk + jxik j);and some nj with (j 6= 0) is equal to 0, then xij is said to be a\bounding variable" of n.It is important to observe that the only orders dedued by any of ourrules whih an have bounding variables are the polymorphi orders jxijthemselves and the orders assigned to xj in terms xj(A1; : : : ; An), whihhave bounding variable jxj j. Any other polymorphi order that we assign isthe suessor 1 + n of some order n, and it is lear that no suessor orderan have a bounding variable.Further, the following rule learly holds for types assigned by our algo-rithm:bounding variables: If xi has type t in P and the order of t has boundingvariable xj , then xj has type t in P .The reason for this is that any rule whih assigns a type with boundingvariable xj in the �rst instane atually assigns this type to the variable xj .Further, this implies that we an assume that any type with a boundingvariable has only one bounding variable.We present an inomplete but often suessful algorithm for omputa-tion of the type of a proposition or propositional funtion P in RTT . Thisalgorithm follows the STT algorithm very losely.Provisional algorithm: We desribe the omputation of the type t. Theidea, as in the STT algorithm, is to onstrut a set of judgments \xihas type ti" deduible using the type judgment rules whih satis�esall the rules for a type funtion exept that types may have variableomponents: arbitrary instantiation of the type variables then yieldsa true type funtion.Begin the onstrution of the set of judgments by omputing the \lo-al" type of eah ourrene of eah variable xi. The algorithm isreursive in the same way as the STT algorithm: we assume that eahpf argument of pf appliation terms has been suessfully assigned atype.As in the STT algorithm, what remains is to unify distint typesassigned to the same variables (or show that they annot be uni�ed).

22 M. RANDALL HOLMESIf any variable is assigned types of di�erent arities or if any variablexi is assigned a type whih ontains [xi℄ as a proper omponent, theproess terminates with the judgment that P is ill-typed. Note that ifxi is assigned a type with bounding variable jxij, this does not lead toforbidden irularity: the only ourrene of [xi℄ in the type assignedto xi is the ourrene of jxij in its order. Substitution of the typet of xi for [xi℄ in t has the e�et of replaing jxij with the order of tin the order of t, and after simpli�ation the order is left the same.Order variables an lead to fatal irularity, though: if xi is assigneda type t with an order whih is a maximum of orders one of whih isjxij+ r, with r 6= 0, then t[t=[xi℄℄ 6= t and we an onlude that P isill-typed.If xi is assigned any type t whih is not a variable type (inludingomposite types with variable omponents) replae all ourrenes of[xi℄ in types assigned to other variables with the type t. Note thatthis does not neessarily eliminate all ourrenes of xi: if the type ofxi has bounding variable xi, ourrenes of jxij will remain. If xi isassigned type [xj ℄ (j 6= i), proeed as in the STT algorithm.Notie that suh substitutions will usually our at most one for anygiven variable xi, sine the target type is usually eliminated every-where. Of ourse, if [xi℄ is introdued as a proper omponent of thetype of xi, terminate with a judgment of ill-typedness. The exeptionin whih the variable xi is assigned a type with bounding variable xiremains to be onsidered. Notie that as soon as a variable is assignedany type whih does not have a bounding variable, any type whihthat variable may have been assigned whih had a bounding variablewill be onverted to a form whih does not have a bounding variable.If xi is assigned types [xj ℄ and t in P , add the judgment \xj has typet in P" and eliminate the type assignment \xi has type [xj ℄ in P",exept in two speial situations whih follow. Note that all ourrenesof [xj ℄ will then be eliminated if t is not a type variable and does nothave order with bounding variable xj . In these speial ases where[xj ℄ would not be eliminated we proeed di�erently: if xi is assignedtypes [xj ℄ and [xk ℄, we assign xi, xj , and xk the type xmaxfi;j;kg. If thetype t has bounding variable xj , it must be the ase that the judgment\xj has type t in P" has already been made. In this ase we de�ne t0as t[[xmaxfi;jg℄=xj ℄ and assign this type to both xi and xj , replaingall ourrenes of [xi℄ and [xj ℄ in all type judgments with [xmaxfi;jg℄.If xi is assigned types (t1; : : : ; tn)m1 and (u1; : : : ; un)m2 in P , thejudgments ti = ui follow for eah relevant i. From these equalityjudgments ontinue to dedue further equality judgments in the sameway. This proess will terminate with either a judgment that P isill-typed or a �nite nonempty set of nontrivial judgments of the form

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 23[xk℄ = vk, eah of whih has \xk has type vk" as a onsequene. Assignto xi the types whih result if all these types xk are replaed withthe orresponding vk's in eah of the two types being reoniled (theresulting types will not neessarily be the same, beause the ordersmay be di�erent). Note that no new assignment to xi an result,beause [xi℄ annot be a omponent of the type assigned to xi unlessP is ill-typed.If xi is assigned types (t1; : : : ; tn)m1 and (u1; : : : ; un)m2 in P , or ifxi is assigned types ()m1 and ()m2 , the orders m1 and m2 should bethe same. In this algorithm, we only use this information if one orboth of the orders m1 or m2 has a bounding variable. If m1 hasbounding variable xj and m2 has no bounding variable, we make theadditional judgment \xj has type (u1; : : : ; un)m2 in P" and replaeall ourrenes of jxj j with m2 (any ourrenes of [xj ℄ as a typeshould already have been eliminated). We proeed symmetrially ifm2 has a bounding variable and m1 has no bounding variable. Ifm1 and m2 have bounding variables xj and xk respetively, we makethe additional judgments \xj has type (u1; : : : ; un)m2 in P" and \xkhas type (t1; : : : ; tn)m1 in P", then replae all ourrenes of jxj jand jxkj (there should be no frank ourenes of [xj ℄ or [xk ℄) in typejudgments with jxmaxfj;kgj. Both of these maneuvers are justi�ed bythe bounding variable rule.This proess must terminate. Eah step of the proess desribed elim-inates at least one variable type [xi℄ from onsideration (along withall ourrenes of its order jxij) or terminates with a judgment ofill-typedness.When the proess terminates, we will either have onluded that P isill-typed (and this judgment will be honest beause the rules are soundfor the intended interpretation) or we will have obtained a set of typeassignments to the variables appearing in P almost satisfying the on-ditions for a type funtion: the diÆulty is that the same variable maybe assigned distint rami�ed types orresponding to the same simpletype but having typographially di�erent orders. If eah variable hasbeen assigned a unique type by the end of the proess, then the al-gorithm sueeds in de�ning a type funtion � up to assignments ofonrete type values to type variables, as above.This algorithm is still based on the quite standard approah of typeuni�ation implemented, for example, in the type heking of the om-puter language ML (see [Milner, 1978℄).The algorithm above is sound but inomplete. If it yields a type, it willalways be a orret type, but there are propositions and pfs whih annotbe typed by this algorithm but whih an be read as well-typed terms of

24 M. RANDALL HOLMESRTT . In pratie, the algorithm is quite good; it is not easy to write atypable term of RTT whih it will not type (though we shall present someexamples).A omplete algorithm requires uni�ation of orders. This will departfrom the usual methods of type heking, beause it will require reasoningabout numerial inequalities.It might seem that we would need a new kind of type judgment to ex-press equations between polymorphi orders, but in fat \order equalityjudgments" of the form \m = n in P", where m and n are polymorphiorders, are equivalent to type equality judgments \()m = ()n in P". Wewill allow ourselves to abbreviate type equality judgments as order equalityjudgments when this an ause no onfusion.Obviously sound additional rules areomponentwise equality (order): If (t1; : : : ; tn)m1 = (u1; : : : ; un)m2 inP then ()m1 = ()m2 in P .order substitution: If xi has type t in P and m is the order of t, and()p = ()q in P holds, then ()p[m=jxij℄ = ()q[m=xi℄ in P holds.We outline our basi approah to reasoning about order uni�ation. Anorder equality judgment in standard form will take the formmaxfn0; n1 + jxi1 j; : : : ; nk + jxik jg = maxfm0;m1 + jxj1 j; : : : ;ml + jxjl jg:This is equivalent to a disjuntion of onditions, eah of whih asserts theequality of one of the terms of the �rst maximum with one of the terms of theseond maximum along with the inequalities asserting that the two hosenterms are greater than or equal to the other terms of the respetive maximafrom whih they are taken. If one or both of the orders has a boundingvariable, the bounding variable is the only possible maximum hosen (whihsimpli�es the alulation in these ases by reduing the number of ases).All of the resulting statements an be expressed using assertions of theform jxij � n, jxij � n, or jxij � jxj j � n, where n is an integer. Anyequation or inequality between terms of the forms n0 or nk + jxik j an beonverted to a onjuntion of inequalities of the forms above by substratingan appropriate quantity from eah side of the equality or inequality andonverting an equation to the onjuntion of two inequalities in the obviousway. Any assertion of the form jxij � r where r < 0 (whih will also beobtained (e.g.) from an equation jxij+m = jxij + n where m 6= n) an beused to onlude that an entire onjuntion is false.We now desribe a way to ompute omplete onditions for well-typednessof a term from a number of order equality judgments. Convert eah orderequality judgment to a disjuntion of onjuntions of inequalities of theforms desribed above. A onjuntion of disjuntions of onjuntions isonverted to a disjuntion of onjuntions in the obvious way.

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 25Now eah onjuntion of inequalities is proessed separately. Present allinequalities in a uniform way by rewriting jxij � n and jxij � n as jxij�0 �n and 0 � jxij � �n, respetively. Every inequality is then written in theform A�B � n. For eah xi whih appears, inlude 0� jxij � 0, 0� 0 � 0and jxij�jxij � 0 in the onjuntion. Wherever A�B � n1 and A�B � n2both appear, retain just A � B � minfn1; n2g. Wherever A � B � m andB�C � n both appear, add A�C � m+n to the onjuntion. Apply theseoperations repeatedly if neessary. If any onjunt of the form jxij � 0 � rwith r < 0 or jxij � jxij � r with r < 0 appears, onlude that the onjuntis false. We laim that this proedure will produe a anonial ompleteonjuntion equivalent to the onjuntion we started with.Lemma: Any onjuntion of a set of inequalities of the form A � B � n,where A and B are either 0 or variables with natural number values, isonverted to a anonial equivalent form by the proedure desribedabove.Proof of Lemma: We will refer to items suh as A and B above as \liter-als" for the moment. In our appliation, literals are 0 and polymorphiorders jxij of variable types.We laim �rst that inonsisteny of the onjuntion of a set of inequal-ities is always deteted by this proedure. Suppose we have a partialassignment of values to literals (with 0 assigned the value 0) and wewish to onsider possible values of a literal A to whih a value has notbeen assigned. The onditions of forms A � B � n, C � A � m forB and C to whih values have been assigned determine intervals inwhih the value A an lie. Now intervals have the logially interestingproperty that any set of intervals whih interset pairwise atuallyhave nonempty intersetion. If it is not possible to assign a value toA onsistent with given inequalities involving A and assignments ofvalue, then there must be a pair of intervals A�B � n, C�A � m forB and C to whih values have been assigned whih do not interset(as intervals of the same kind obviously always interset). The valuesassigned to B and C then annot satisfy C�B � m+n, whih is oneof the equations added to the set by our proedure, as well as being alogial onsequene of the original onjuntion, so the values assignedto B and C were already inonsistent with the onjuntion of inequal-ities. This means that if a onjuntion of literals is atually satis�able,then we an proeed by ompleting the onjuntion as above, and us-ing the ompleted onjuntion and the values assigned previously toother literals to hoose a possible value for the eah literal; this willwork regardless of the order in whih the literals are onsidered.We laim further that two equivalent onjuntions will be expandedto the same form by this proedure. This is easy: suppose one on-

26 M. RANDALL HOLMESjuntion, when expanded, ontains B� 0 � n0 and the other ontainsB � 0 � n1 (n0 6= n1). It follows that the range of values whih anbe assigned to B at the very �rst step of the proess of assignmentsof values to literals is di�erent, so the original onjuntions annothave been equivalent. Now suppose that one onjuntion, when ex-panded, ontains B � A � n0 and the other ontains B � A � n1(n0 6= n1). Now assign a value to A (ompatible with its bound rela-tive to 0). The range of values possible to assign to B (the bound onwhose value relative to 0 being the same in both expanded onjun-tions) will be di�erent for the two expanded forms, whih shows thatthe two expanded onjuntions annot be equivalent, so the originalonjuntions were not equivalent.Conjuntions an then be simpli�ed by eliminating redundant onjunts(a onjunt is redundant if eliminating the onjunt then omputing theanonial form gives the same result as omputing the anonial form ofthe original onjuntion).One eah disjunt is omputed, idential disjunts or onjuntions weakerthan other disjunts an be reognized and eliminated (by omparing anon-ial forms) and a simpli�ed form of the disjuntion of onditions under whihthe term is well-typed an be omputed (or ill-typedness an be reported ifall onjunts redue to falsehood).This an be applied to produe a omplete algorithm: use the provisionalalgorithm desribed above to generate a list of type assignments whosefailures of uniqueness are indued only by failures to unify order, then applythe proedure desribed above to redue the order equality judgments thatare required to arithmeti assertions about polymorphi orders. Note thatunder the resulting onditions it is possible to selet any of the types givenfor eah variable or propositional funtion as orret if the onditions areonsistent, sine all types given for any one objet will be equal under theonditions derived from the uni�ation of the orders.A notable point about the algorithm is that the simpli�ation of thearithmeti onditions on polymorphi orders made possible by the use ofanonial forms for onjuntions ombined with the elimination of redun-dant onjunts and disjunts gives quite manageable output (earlier versionswhih omputed and displayed things more lazily gave unmanageably largedisplays whih were not useful in pratie).The reasoning above was informal arithmetial reasoning. It is useful toobserve that it an be oded into the language of order equality type judg-ments. We do not do this in the software: the type inferene algorithm justimplements the provisional algorithm desribed above while the inequalitiesare handled by a dediated representation of quite onventional reasoningabout arithmeti inequalities. So we feel no need to do more than sketh theway in whih this reasoning ould be inorporated diretly into the system

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 27of reasoning about types. We use the language of order equality judgments,but reall that these abbreviate speial type equality judgments.order inequality: Judgments suh as \m � n in P" are the same as\n =maxfm;ng in P", and so require no expansion of our language of typejudgments.type subtration: The judgments we have found it onvenient to write as\A�B � n in P" an be expressed formally as \A � B + n in P".relations to zero: The judgments 0�m � 0 and m�m � 0 assumed forall orders in the algorithm above expand to judgments automatiallymade by the algorithm for simplifying polymorphi orders.0�m � 0 � 0 � 0 +m � 0 � m � m = maxf0;mgm�m � 0 � m � 0 +m � m = maxfm;mgequations between maxima: \maxfm;ng = p" implies \(n � m andn = p) or (m � n and m = p)". Of ourse, this needs to be applied onboth sides of the equals sign. It also requires us to expand our languageto allow the handling of ases: the distributivity of onjuntion overdisjuntion will also be needed if this is to be ompletely formalized.Note that the speial treatment of orders with bounding variables anbe justi�ed using the type judgment rule for bounding variables givenabove ombined with order uni�ation.\triangle inequality" steps: The dedution from judgements A�B � mand B � C � n to A� C � m+ n is justi�ed as follows: we atuallyread A�B � m as A � B+m: from A � B+m and B � C+n dedueA+B � B +C +m+ n, and from this dedue A � C +m+ n usingthe rules \dedue m+ p � n+ q from m � n and p � q" and \deduem � n from m+p � n+p". These rules doubtless an be \simpli�ed"to orresponding rules about equations, but the basi shape of theadditional inferene rules needed to justify triangle inequality steps islear.absurdity: Judgments of the form m � �r where r > 0 or m �m � �rwhere r > 0 signal absurdity: this is implemented by rules assertingthat from 0 = m+ r or m = m+ r (where r > 0) in P we dedue thatP is ill-typed.7 RELATIONS TO OTHER WORKIn this setion we disuss the relationship of the development in this paperto the development in [Kamareddine, et. al , 2002℄. We are not familiar

28 M. RANDALL HOLMESwith the details of any other attempt to faithfully implement the theory oftypes of PM in modern terms: we are familiar with some other treatmentsof the rami�ed theory of types, but they seem to be more remote from theatual usage of PM .The system of [Kamareddine, et. al , 2002℄ uses a di�erent (and moreusual) kind of ontext than our system. The form of a type judgment ofthe system of [Kamareddine, et. al , 2002℄ is � j= f : t, where f is a term, tis the type assigned to that term, and � is a �nite funtion from variablesto types representing types assigned to variables in the ontext. In oursystem, a type judgment about an entire term (propositional notation) hasno ontext, while type judgments about variables have as ontext the termin whih they appear. To make omparison easier, we reprodue in itsentirety (though ertainly without full explanation) the reursive de�nitionof type judgments from [Kamareddine, et. al , 2002℄. We will refer bak tothis in the following setion of examples.De�nition 40 from [Kamareddine, et. al , 2002℄: The judgements � `f : ta are indutively de�ned as follows:1. (start) For all a we have: ` a : 00:For all atomi pfs f we have: ` f : ()0;2. (onnetives) Assume � ` f :(ta11 ; : : : ; tann)a, � ` g:(ub11 ; : : : ; ubmm)b,and x < y for all x 2 dom(�) and y 2 dom(�). Then� [� ` f _ g : �ta11 ; : : : ; tann ; ub11 ; : : : ; ubmm �max(a;b);and � ` :f : (ta11 ; : : : ; tann)a;3. (abstration from parameters) If � ` f : (ta11 ; : : : ; tamm)a, tam+1m+1 isa prediative type, g 2 A [P is a parameter of f , � ` g : tam+1m+1 , andx < y for all x 2 dom(�), then�0 ` h : (ta11 ; : : : ; tam+1m+1)max(a;am+1+1):Here, h is a pf obtained by replaing all parameters g0 of f whihare ��-equal to g by y. Moreover, �0 is the subset of the ontext�[fy : tam+1m+1 g suh that dom(�0) ontains all and only those variablesourring in h;4. (abstration from pfs) If (ta11 ; : : : ; tamm)a is a prediative type, � `f : (ta11 ; : : : ; tamm)a, x < z for all x 2 dom(�), and y1 < � � � < yn arethe free variables of f , then�0 ` z(y1; : : : ; yn) : (ta11 ; : : : ; tamm ; (ta11 ; : : : ; tamm)a)a+1;

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 29where �0 is the subset of � [fz:(ta11 ; : : : ; tamm)ag suh that dom(�0) =fy1; : : : ; yn; zg;5. (weakening) If �, � are ontexts, � � �, and � ` f : ta, then also� ` f : ta;6. (substitution) If y is the ith free variable in f (aording to the orderon variables), and � [fy : taii g ` f : (ta11 ; : : : ; tann)a, and � ` k : taiithen �0 ` f [y:=k℄ : (ta11 ; : : : ; tai�1i�1 ; tai+1i+1 ; : : : ; tann)b:Here, b = 1 +max(a1; : : : ; ai�1; ai+1; : : : ; an;),and = maxfj j 8x:tj ours in f [y:=k℄g(if n = 1 and fj j 8x:tj ours in f [y:=k℄g = ? then take b = 0) andone more, �0 is the subset of �[fy : taii g suh that dom(�0) ontainsall and only those variables ourring in f [y:=k℄;7. (permutation) If y is the ith free variable in f (aording to theorder on variables), and � [fy:taii g ` f : (ta11 ; : : : ; tann)a, and x < y0for all x 2 dom(�), then�0 ` f [y:=y0℄ : (ta11 ; : : : ; tai�1i�1 ; tai+1i+1 ; : : : ; tann ; taii)a:�0 is the subset of � [fy:taii ; y0:taii g suh that dom�0 ontains all andonly those variables ourring in f [y:=y0℄;8. (quanti�ation) If y is the ith free variable in f (aording to theorder on variables), and � [fy:taii g ` f : (ta11 ; : : : ; tann)a, then� ` 8y:taii [f ℄ : (ta11 ; : : : ; tai�1i�1 ; tai+1i+1 ; : : : ; tann)a:There is a major notational di�erene between the propositional funtionnotation of [Kamareddine, et. al , 2002℄ and our own (whih an be seen inthe de�nition of type judgments just above). The authors of [Kamareddine,et. al , 2002℄ attah type labels to quanti�ed variables. This is ertainly notin the spirit of PM , where there is no notation for types at all. It wouldbe possible to modify their system to make this unneessary, but it wouldthen be neessary to inlude type hypotheses for quanti�ed variables in theenvironment.The authors of [Kamareddine, et. al , 2002℄ are fored by the strutureof their system into adopting a muh more ompliated de�nition of sub-stitution (by \substitution", we mean \substitution into propositional (orpf) notations" throughout this paragraph; substitution into type notationsis used in the de�nition of our system of type judgments, but involves nologial diÆulties). The diÆulty is that some of the rules of their system oftype judgments are de�ned in terms of the notion of substitution (as an be

30 M. RANDALL HOLMESseen above), so substitution has to be de�ned prior to the adoption of thetype system. As a result, a ompliated detour through lambda-alulusis required to de�ne the notion of substitution suessfully, whereas in ourdevelopment we are able to orret the natural de�nition of substitution byappealing to the (simple) theory of types, beause we make no use of sub-stitution in our de�nition of type judgments. One we have de�ned types,we are able to use the natural de�nition of substitution, with the additionalstipulation that all terms involved have to be well-typed and substitutionsfor variables have to reet the inferred types of the variables.Polymorphism is represented di�erently in the two systems. In the systemof [Kamareddine, et. al , 2002℄, there are no polymorphi type judgements,but a term may be assigned di�erent types in di�erent ontexts. In oursystem, a single (but possibly polymorphi) type is always assigned to aterm, whose struture is general enough to indiate all possible types forthe term. The side onditions on polymorphi orders generated by theomplete algorithm for RTT ompliate this piture somewhat.The range of terms reognized as well-typed by our system is far largerthan that reognized by the system of [Kamareddine, et. al , 2002℄, andapparently larger than that reognized by PM !. The system of [Kamared-dine, et. al , 2002℄ only supports types all of whose omponent types areprediative. Probably the modi�ations of the system required to lift thisrestrition would not be extensive. On reading [Kamareddine, et. al , 2002℄originally, we thought this was a weakness of their development, but in fatit seems to reet the intentions of the authors of PM : see p. 165 of [Russelland Whitehead, 1967℄, where they assert that all non-prediative proposi-tional funtions are to be formed from prediative ones by generalization,and that no bound variables of non-prediative type are needed. However,there is a problem with this (also apparently reognized by the authors ofPM in an immediately following remark on p. 165): without variables ofpossibly non-prediative type, one annot express the axiom of reduibilityin a typable form. PM makes a speial provision for this by introduingappliation of funtion variables without assigned order on p. 165; we sup-pose that terms with suh variables in them would not de�ne propositionalfuntions for PM if it was desired not to have types with imprediativeomponents. The system of PM an onveniently restrit imprediativityto the top level of types as they do (while apparently forbidding quanti�a-tion over imprediative types) beause the axiom of reduibility allows oneto assoiate with eah element of an imprediative type with prediativeomponents a oextensional element of the prediative type with the sameomponents, and one an quantify over this type; in the absene of theaxiom of reduibility, one would need to be able to quantify over impred-iative types diretly in order to be able to say anything about them, andthis would mean that one ould de�ne propositional funtions with moreomplex types.

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 31The system of [Kamareddine, et. al , 2002℄ is more modern in appearanethan ours; we do reognize this as an advantage of that system. Our programof using propositional notations themselves as environments has at leastone strange e�et to go along with its advantages. In the simple theory oftypes, it is reasonable to avoid assigning types to bound variables (that is,to de�ne the type algorithm in suh a way as to e�etively rename boundvariables as they are enountered, so that a bound variable may have thesame shape as a free variable or di�erently bound variable of a di�erent typeelsewhere without ausing a type onit). However, without a onventionalenvironment the only way to assoiate a polymorphi type with a variableseems to be to name the polymorphi type after the variable to whih it isassigned. This makes it impratial to attempt to rename variables boundin arguments of propositional funtions, whih has odd e�ets on typingin the simple theory of types whih will be seen in the examples. In therami�ed theory, it seems to be best to type all variables whih appear, freeor bound (even in [Kamareddine, et. al , 2002℄, the authors remark that itis neessary to assign types to some bound variables).We believe that our system is better in ertain ways than the system of[Kamareddine, et. al , 2002℄. The fat that our notation for propositionalfuntions does not require type indies is truer to the original system of PM .The fat that the de�nition of our type inferene system does not dependon the notion of substitution allows the de�nition of substitution to besimpler and more natural in our formalization. We believe that our systemlends itself better to mehanial implementation, but this is perhaps unfairsine the system desribed here was reverse-engineered from a mehanialimplementation (though it should be noted that the formal system wasreverse-engineered from an early version of the program whih didn't workvery well, and improvements in the formalization then drove improvementsin the program). It would be interesting to see whether and how well thesystem of [Kamareddine, et. al , 2002℄ lends itself to automation. Thesystem of [Kamareddine, et. al , 2002℄ handles bound variables in a waya little more in aord with modern tastes than ours does. The system of[Kamareddine, et. al , 2002℄ is more faithful to PM in limiting types to thosewith prediative omponents, but we feel that any serious attempt to workin RTT without reduibility would require the lifting of this restrition.The simple theory of types is of ourse very similar to quite standard typesystems exept for its lak of head binders in funtion notation, and thetype inferene algorithm for this system is reognizably of a standard kind,exept for the adaptations to the head-binder-free notation for funtions.The rami�ed theory of types is very eentri as a type system, and theomplete algorithm we exhibit for it is unusual in its need to reason aboutarithmeti in order to manage order uni�ation. From the standpoint ofmodern theories of types, the orders of RTT are peuliar union types, inwhih quite heterogeneous kinds of objet are onglomerated together.

32 M. RANDALL HOLMES8 EXAMPLESTrue to the historial origins of this paper, we will begin by presenting someexamples from [Kamareddine, et. al , 2002℄. Some features of the output ofour software are suppressed.We are running the RTT heker, but in many ases this will not be ob-vious, as our system does not display order supersripts on types unless theorder is more than one greater than the maximum order of the omponenttypes.8.1 Example 1Term input:S2(a1,a2)final type list:unonditional type:()Just as in example 49, lause 1, of [Kamareddine, et. al , 2002℄, the propo-sitional notation S(a1; a2) (the omputer requires a suÆx on the prediateindiating its arity) is reognized as a proposition (a pf of type ()). Thesystem of [Kamareddine, et. al , 2002℄ reognizes this beause the pf is anatomi proposition; ours does beause the pf ontains no free variables.8.2 Example 2Term input:(R1(x1) v S1(x1))final type list:x1: 0unonditional type:(0)This is parallel to the seond example in lause 2 in example 49; our usageof suÆxes on prediates to indiate arity forbade reproduing the proposi-tional notation R1(x1) _ R2(x1) of the original: in this and the followingexample, our S1 orresponds to the R2 of [Kamareddine, et. al , 2002℄.Here is the analysis of this example from [Kamareddine, et. al , 2002℄.The rule numbers refer bak to de�nition 40 of [Kamareddine, et. al , 2002℄,whih is reprodued in the previous setion of this paper.` R1(a1) : () ` R2(a1) : ()` R1(a1) _ R2(a1) : () rule 2

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 33but not : x1 : 0 ` R1(x1) : (0) x1 : 0 ` R2(x1) : (0)x1 : 0 ` R1(x1) _ R2(x1) : (0; 0) rule 2(x1 6< x1 beause < is strit). To obtain R1(x1) _ R2(x1) we must make adi�erent start:` R1(a1) : () ` R2(a1) : ()` R1(a1) _ R2(a1) : () rule 2 ` a1 : 0x1 : 0 ` R1(x1) _ R2(x1) : (0) rule 3;8.3 Example 3We look at a slightly di�erent pf for our next example.Term input:(R1(x1) v S1(x2))final type list:x1: 0x2: 0unonditional type:(0,0)Our heker analyzes this by observing that the pf ontains two freevariables whih are arguments of elementary prediates, so must have type0, so the pf is a funtion of two individual arguments, i.e., has type (0; 0).This is very similar to our heker's approah to the previous example.The analysis of a term with parallel struture in the system of [Kamared-dine, et. al , 2002℄ is not so similar to the analysis of the previous exampleas is the ase for our system. We set up this type derivation in the style of[Kamareddine, et. al , 2002℄:` R1(a1) : () ` a1 : 0x1 : 0 ` R1(x1) : (0) rule 3 ` R2(a1) : () ` a1 : 0x2 : 0 ` R2(x2) : (0) rule 3x1 : 0; x2 : 0 ` R1(x1) _ R2(x2) : (0; 0) rule 2The appliation of rule 2 here is orret beause x1 < x2.In the system of [Kamareddine, et. al , 2002℄, the term R1(x1)_R2(x1) istyped by �rst onsidering the typing of R1(a1) _ R2(a1), whih is immedi-ately seen to have type (), and in whih the term a1 has type 0, then usingthe rule for typing substitutions to insert a new omponent with type 0 intothe type () of R1(a1)_R2(a1) (the new omponent orrelates with the newvariable whih replaes a1) to obtain the type (0). The term R1(x1)_R2(x2)is typed by observing that the two disjunts have the property that all vari-ables of the �rst are alphabetially prior to the variables of the seond,

34 M. RANDALL HOLMEStyping the �rst and the seond as (0) in the same way we typed the pre-vious term, then onluding that the type of the whole is the \produt"(0; 0) of two opies of (0) (speaking somewhat loosely). The omparisonof approahs to these two examples should make lear the quite di�erentavors of the two approahes.8.4 Example 4Term input:(x2(a1) v S1(a1))final type list:x2: (0)^max(|x2|,1)unonditional type:((0)^max(|x2|,1))This is the �rst example given in example 49 in [Kamareddine, et. al ,2002℄. Our system tells us that the funtion x2 (alled z in the original)an have a type of any order with sole omponent 0: the order jx2j of thistype will be at least 1, whih is expressed by writing it as the maximum of1 and jx2j (this is an order with a bounding variable).8.5 Example 5Term input:[x1℄(x1() v ~x1())final type list:x1: ()^max(|x1|,0)unonditional type:()^max(|x1|+1,1)This is example 51 from [Kamareddine, et. al , 2002℄. Order is importantin this example. Note that the variable x1 represents a proposition (a 0-arypropositional funtion); the order of its type is 0. The entire term is also aproposition (it ontains no free variables, beause x1 is bound by the quan-ti�er) but its order is at least 1, beause it must be greater than the orderof the quanti�ed variable. As in the previous example, there is no upperbound on the possible order of the type here. This an be hanged, though,using the \prediativity" quali�er of propositional funtion appliation:Term input:[x1℄(x1!() v ~x1!())final type list:x1: ()unonditional type:

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 35()^1Now we know that the order of x1 is 0 (sine it is the smallest possibleorder it is not displayed) and the order of the type of the whole term is seento be exatly 1.8.6 Example 6We have yet to see an expliit polymorphi type. This an be remedied byonsidering the term in Remark 58 of [Kamareddine, et. al , 2002℄.Term input:x2(x1)final type list:x1: [x1℄x2: ([x1℄)^max(|x1|+1,|x2|,1)unonditional type:([x1℄,([x1℄)^max(|x1|+1,|x2|,1))In this term, x1 is of a ompletely unknown type [x1℄, while x2 is seen tobe of type ([x1℄) (it is a prediate of objets of type [x1℄), so the whole termis of type ([x1℄; ([x1℄)), in whih the order of the omponents is determinedby the fat that x1 is alphabetially prior to x2. The order index on thetype ([x1℄) of x2 appears beause we have no order restrition on x2. Weget a prettier display if we hange to prediative appliation:Term input:x2!(x1)final type list:x1: [x1℄x2: ([x1℄)unonditional type:([x1℄,([x1℄))In [Kamareddine, et. al , 2002℄, this is also an example of polymorphism(the pf is written z(x) instead of our x2(x1)): two di�erent derivations aregiven, eah yielding a di�erent type,` R(a1) : () ` a1 : 0x : 0 ` R(x) : (0) rule 3x : 0; z : (0) ` z(x) : (0; (0)) rule 4versus ` R(a1) : ()x : () ` x() : (()) rule 4x : (); z : (()) ` z(x) : ((); (())) rule 4;

36 M. RANDALL HOLMESwhereas in our system we get a single omputation showing us what alltypes look like.If we supply more information in the ontext (the ontext an only bemanipulated in our system by embedding the term to be typed in a largerterm), the polymorphi type will beome more spei�:Term input:(x2!(x1) v S1(x1))final type list:x1: 0x2: (0)unonditional type:(0,(0))Here we know from additional loal information in the term that thetype of x1 is 0, so we get a more spei� type for the whole propositionalfuntion.8.7 Example 7Here we give more omplete output for a larger example term. The examplepropositional funtion is adapted from the de�nition of a real number as aDedekind ut in example 71 in [Kamareddine, et. al , 2002℄. Prediativepropositional funtion appliation has been used throughout to simplify thedisplay.Term input:((([Ex2℄x1!(x2) and [Ex2℄~x1!(x2))and [x2℄[x3℄(x1!(x3) implies (L2(x3,x2) implies x1!(x2))))and [x2℄(x1!(x2) implies [Ex3℄(x1!(x3) and L2(x2,x3))))basi list:x1: ([x2℄)x1: [x1℄x1: ([x3℄)x2: [x2℄x2: 0x3: 0x3: [x3℄unifiation list:x~2: [x~1℄x~2: ([x2℄)x~2: ([x3℄)x~1: ([x3℄)x~1: ([x2℄)x~1: [x~2℄

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 37x1: ([x3℄)x1: ([x2℄)x1: [x1℄x2: 0x2: [x2℄x2: [x3℄x3: [x3℄x3: [x2℄x3: 0final type list:x~2: (0)x~1: (0)x1: (0)x2: 0x3: 0unonditional type:((0))The additional displays shown here (suppressed in previous examples)give some hint at the internal proesses of the type algorithm. The \basilist" ontains the loal information about types of variables. The \uni�-ation list" ontains information derived by unifying types pairwise. The�nal list is obtained by the proess of eliminating superuous type vari-ables by global substitutions. The additional variables x�1 and x�2 areused as \plaeholders" internally by the algorithm (the software representstype equality judgments \t = u in P" as pairs of type judgemnts \xk hastype t in P" and \xk has type u in P" where xk has a fresh (and negative)index). The type obtained is the same as the type ((00)1)2) laimed for thispropositional funtion in [Kamareddine, et. al , 2002℄: reall that minimalorder indies are not displayed.8.8 Example 8We give examples of the urious type phenomena whih an result fromidenti�ations of variables with bound variables in propositional funtionarguments whih happen to be used in the names of polymorphi types.- test "x1(x3(x2))";final type list:x1: (([x2℄,([x2℄)))((([x2℄,([x2℄))))

38 M. RANDALL HOLMESThe format is di�erent beause we are here using the STT type algo-rithm. The �nal line is the type of the term. x1(x3(x2)) ontains one freevariable x1, whih is a funtion taking one argument of the type of x3(x2);x3(x2) is itself a funtion of two arguments, x2, whose type is [x2℄ (ambigu-ous) and x3, whose type is ([x2℄), sine it takes one argument of type [x2℄.The type of x3(x2) is thus ([x2℄; ([x2℄)) (reall that arguments are suppliedto a propositional funtion in alphabetial order of the free variables repre-senting them), the type of x1 is (([x2℄; ([x2℄)))and the type of x1(x3(x2)) is((([x2℄; ([x2℄)))).The term x1(x2(x1)) apparently has exatly the same meaning, sinex2(x1) is the same objet as x3(x2), but the result of typing this term isquite di�erent.- test "x1(x2(x1))";basi list:x1: (([x1℄,([x1℄)))unifiation list:x1: (([x1℄,([x1℄)))final type list:x1: !?!!?!This fails to type. The diÆulty is that the types of the two ourrenesof x1 are fored to be the same, and this results in irularity.In other ases this is harmless in our implementation of STT :- test "x1(x1(x2))";final type list:x1: ((([x2℄),[x2℄))(((([x2℄),[x2℄)))There is no problem here beause, although the types of the two o-urrenes of x1 are inompatible, all information about the type of x1 isdisarded when the typing of the argument x1(x2) is �nished, sine it is notused in the polymorphi type of this term. But the RTT algorithm will notaept this:Term input:x1!(x1!(x2))basi list:x1: ((([x2℄),[x2℄))

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 39x1: [x1℄x1: ([x2℄)x2: [x2℄unifiation list:x~2: [x~1℄x~2: ([x2℄)x~2: ((([x2℄),[x2℄))x~1: ((([x2℄),[x2℄))x~1: ([x2℄)x~1: [x~2℄x1: ((([x2℄),[x2℄))x1: ([x2℄)x1: [x1℄x2: (([x2℄),[x2℄)x2: [x2℄final type list:x~2: ?!?x~1: ?!?x1: ?!?x2: ?!?unonditional type:?!?Attempting to type standard form:x1!(x2!(x3))onditional type:(((([x3℄),[x3℄)))Here type information from the propositional funtion argument is pre-served, and it is notied that x1 needs to be assigned type (x2) and type((([x2℄); [x2℄)), whih are inompatible. However, this is not quite the end ofthe matter: we used a variant of the RTT heker whih attempts to reoverfrom type failure by renaming bound variables, and the �-equivalent termx1!(x2!(x3)) is atually typable (the heker is less verbose on the seondhek; one an rerun the heker on the term with renamed variables to getmore detailed information).8.9 Example 9We now give an example of the appliation of the omplete type algorithmfor RTT .Term input:(x1(x2,x2) v x1([x3℄x3(x4),[x5℄[x7℄x7(x5,x6)))unonditional type:

40 M. RANDALL HOLMES?!?onditional type:((([x6℄)^max(|x3|+1,|x6|+2,2),([x6℄)^max(|x5|+2,|x6|+2,|x7|+1,2))^max(|x1|,|x3|+2,|x5|+3,|x6|+3,|x7|+2,3),([x6℄)^max(|x3|+1,|x6|+2,2))WITH|x3| <= |x7| and|x5|+1 <= |x7| and|x6|+1 <= |x7| and|x7|+2 <= |x1| and|x7| <= |x3|The omplete heker tells us that this propositional funtion does nottype under the provisional algorithm (under the heading \unonditionaltype"), then gives a type and a set of onditions on polymorphi ordersunder whih this propositional funtion is well-typed in RTT .8.10 Example 10Here is another example in whih there are two di�erent onditions underwhih the given propositional funtion is well-typed.Term input:(x1!(x2,x2) v x1!([x3℄[x5℄x3!(x5,x8),[x6℄[x9℄x6!(x4,x9)))unonditional type:?!?onditional type:((([x8℄)^max(|x5|+2,|x8|+2,2),([x8℄)^max(|x8|+2,|x9|+2,2)),([x8℄)^max(|x5|+2,|x8|+2,2))WITH|x5| <= |x9| and|x8| <= |x9| and|x9| <= |x5|OR|x5| <= |x8| and|x9| <= |x8|We will attempt to talk our way through the typing of the seond exam-ple. In more standard notation, the propositional funtion isx1!(x2; x2) _ x1!((8x3:(8x5:x3(x5; x8))); (8x6:(8x9:(x6!(x4; x9)))))The entire term is a propositional funtion of the arguments x1 and x2;it is neessary to �gure out what the types of x1 and x2 are. Beause of the

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 41presene of the subterm x1!(x2; x2), we know that the two arguments of anyourrene of x1 must be of the same type. So the propositional funtions(8x3:(8x5:x3(x5; x8))) and (8x6:(8x9:(x6!(x4; x9))) are of the same type.Eah of these is a funtion of one variable, x8 in one ase and x4 in theother, so x4 and x8 are of the same type. This base type is polymorphi:we know nothing about it.Now we need to analyze orders. The type of (8x3:(8x5:x3(x5; x8))) hasorder two greater than the maximum of the orders of [x5℄ and [x8℄. Theinrement of two is beause x3 has type one greater than this maximum,and the order is raised one more beause of the quanti�er over the type ofx3. Similarly, the order of the type of (8x6:(8x9:(x6!(x4; x9))) is two greaterthan the maximum of the order of [x4℄ = [x8℄ and the order of [x9℄. Thesetwo orders have to be the same. There are two ways for this to happen:either the order of [x5℄ is greater than the order of [x8℄, in whih ase theorder of [x9℄ also has to be greater than the order of [x8℄ and atually mustbe the same as the order of [x5℄, or the order of [x8℄ is greater than or equalto the orders of [x5℄ and [x9℄ (whih in this ase need not be the same).And these two ases are what the output above desribes.The type of x1 will be ([x2℄; [x2℄); the type of x2 will be (x8). So theunderlying simple type of this expression is ((([x8℄); ([x8℄)); ([x8℄)), and thisis what we see above, adorned with appropriate orders.9 APPLICATIONS TO PROOF CHECKINGWe briey disuss the appliation of the typing software in the developmentof a proof heker for the system of PM , as expressed in our version of thenotation of [Kamareddine, et. al , 2002℄.Details of the proof heker itself are not espeially relevant at this point(we are attempting to follow the rules of inferene in PM losely). Butthere are a ouple of observations worth making.One never has any oasion to see a type index in the ourse of using theproof heker. This is appropriate, sine PM does not even have notationfor types, so we never see suh notation in PM 's theorems or proofs.The type heker is used ubiquitously as part of the proess of hekingwell-formedness of propositions and propositional funtions. This is natural.There is one plae in the logi where the type heker plays an importantand perhaps not entirely obvious role. This is in the implementation of therule of modus ponens . When one dedues a proposition Q from premises Pand P ! Q, there is a subtle fallay whih an our, and whih use of thetype heker enables one to avoid.All propositions of PM (and so all theorems of the nasent proof heker)are to be understood in the most general possible way: they are to be truefor all possible values of their free variables under all possible assignments

42 M. RANDALL HOLMESof type. The diÆulty is that the form of the proposition P ! Q may givemore type information than Q (and also more than P , but this is harmless).So if the modus ponens rule were implemented in a naive way, it might bepossible to dedue a proposition Q whih is true for all type assignments toQ whih render P ! Q well-typed, but not for some other type assignmentsfor Q. So the proof heker needs to hek that the type heking of P ! Qgives the same type information about Q that the type-heking of Q alonegives.We make the following onjetures, whih we plan to disuss in a laterpaper where we will have more to say about the proof heker.If types onstruted from the type of propositions are admitted, theuse of the naive form of modus ponens will lead to paradox. The rea-son for this is that under reasonable assumptions the type of propositions,for example, has only two elements, so one ould prove an assertion like(9ab:8x:x = a _ x = b) using hypotheses from whih one ould infer that xwas a proposition, but produe the onlusion in systematially ambiguousform. This onlusion leads to ontradition beause one an prove thatsome other types (also onstrutible from the type of propositions) havemore than two elements: for example, ((); ()) has four elements.On the other hand, if types onstruted from the type of propositions arenot permitted (() an our only as the type of a proposition, not as thetype of a propositional funtion) then we believe that use of the naive rule ofmodus ponens does not lead to ontradition, though it leads to unexpetedresults, suh as the ability to prove the \axiom of in�nity" in pure logi. Thereason for this has to do with the relationship between the rami�ed theory oftypes and the set theory NFP de�ned by Marel Crabb�e in [Crabb�e, 1982℄,whih is the prediative version of Quine's \New Foundations". I haveshown elsewhere (in [Holmes, 1999℄) that NFP is mutually interpretablewith the rami�ed theory of types with the axiom of in�nity. Though thereare some details to hek, we believe that it is possible to onstrut a modelof the rami�ed theory of types, using its relationship with NFP , in suh away that all the types are isomorphi in a suitable sense, so that if Q isa theorem for any assignment of types to its variables, it is a theorem forall assignments of types to its variables, whih is a suÆient ondition forthe naive rule of modus ponens to be valid. If the type of propositions ispermitted as a omponent, then it is possible to onstrut types of distint�nite ardinalities, whih annot be isomorphi with one another, so it isneessary to forbid the use of the type of propositions as a omponent typeif one wishes to exploit this (presumed) result.

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 43ACKNOWLEDGEMENTSWe appeiate useful onversations with Professor Kamareddine (and aessto the LaTeX soure of [Kamareddine, et. al , 2002℄ to failitate typesettingof the examples taken or adapted from that paper), and also the helpfulremarks of anonymous referees.BIBLIOGRAPHY[Crabb�e, 1982℄ Crabb�e, M. \On the onsisteny of an imprediative subsystem of Quine'sNF". Journal of Symboli Logi 47 (1982), pp. 131-136.[Holmes, 1999℄ Holmes, M. Randall, \Subsystems of Quine's \New Foundations" withPrediativity Restritions", Notre Dame Journal of Formal Logi, vol. 40, no. 2(spring 1999), pp. 183-196.[Holmes, 2003℄ Holmes, M. Randall, software �les (in standard ML) rtt.sml (sourefor the type heker) and rttdemo.sml (demonstration �le), aessible athttp://math.boisestate.edu/�holmes/holmes/rttover.html.[Kamareddine, et. al , 2002℄ Kamareddine, F., Nederpelt, T., and Laan, R., \Types inmathematis and logi before 1940", Bulletin of Symboli Logi, vol. 8, no. 2, June2002.[Milner, 1978℄ Milner, R., \A theory of type polymorphism in programming", J. Comp.Sys. Si., 17 (1978), pp. 348-375.[Peressini, 1997℄ Peressini, Anthony F., \Cumulative versus nonumulative rami�edtypes", Notre Dame Journal of Formal Logi, vol. 38, no. 3, summer 1997.[Russell and Whitehead, 1967℄ Whitehead, Alfred N. and Russell, Bertrand, PrinipiaMathematia (to *56), Cambridge University Press, 1967.

