
M. RANDALL HOLMES
POLYMORPHIC TYPE-CHECKING FORPRINCIPIA MATHEMATICAABSTRACT:A formal presentation of the rami�ed theory of types of the Prin
ipia Mathemati
a ofRussell andWhitehead is given (along with the simpli�ed theory of types of Ramsey). Thetreatment is inspired by but di�ers sharply from that in a re
ent paper of Kamareddine,Nederpelt and Laan. Algorithms for determining whether propositional fun
tions arewell-typed are des
ribed, in
luding a
omplete algorithm for the rami�ed theory of types,whi
h is unusual in requiring reasoning about numeri
al inequalities in the
ourse ofdedu
tion of type judgments. Software implementing these algorithms has been developedby the author, and examples of the use of the software are presented. The approa
h is
ompared with that of Kamareddine, Nederpelt and Laan, and some brief observationsare made about use of the type
he
ker in a proof
he
ker for the rami�ed theory of typesunder development. 1 INTRODUCTIONThis paper was inspired by
areful reading of the paper [Kamareddine, et.al , 2002℄, where Kamareddine, Nederpelt and Laan present a formalizationof the rami�ed theory of types (hereinafter RTT) of [Russell andWhitehead,1967℄, the Prin
ipia Mathemati
a of Russell and Whitehead (hereinafterPM). It is surprising to dis
over on
lose reading of PM that its theory oftypes (the oldest one) is nowhere given a
omplete formal des
ription whi
his up to modern standards of rigor. There are various formal systems oframi�ed type theory in the literature (the author has even presented one,based on earlier work of Mar
el Crabb�e, in [Holmes, 1999℄), but the onein [Kamareddine, et. al , 2002℄ is
learly motivated by a desire to
loselyimplement the notation of PM , although the approa
h to formalization ofreasoning about types they take is mu
h more modern.During our reading of [Kamareddine, et. al , 2002℄ we developed a type
he
ker [Holmes, 2003℄ for the formalized version of RTT presented in thatpaper. The approa
h we took to the type system in the
ourse of thedevelopment of this
he
ker was quite di�erent from the approa
h taken in[Kamareddine, et. al , 2002℄, and allows type-
he
king for a wider rangeof terms of the language of RTT than does the system of [Kamareddine,et. al , 2002℄. From the implementation of type
he
king we developed atthat time, it is possible to \reverse engineer" a formal treatment of the typesystem of RTT , whi
h we give here.Fairouz Kamareddine (eds.),Thirty Five Years of Automating Mathemati
s 1{43.

 2003, Kluwer A
ademi
 Publishers. Printed in the Netherlands.

2 M. RANDALL HOLMES2 INFORMAL PRESENTATION OF THE SYSTEM OF PRINCIPIAMATHEMATICAWe give an informal presentation of the notions of proposition and propo-sitional fun
tion as a
tually given in PM , in order to motivate the formal-ization of [Kamareddine, et. al , 2002℄. We feel that su
h a presentation isne
essary be
ause super�
ial examination reveals that the system of [Ka-mareddine, et. al , 2002℄ is not identi
al to the system presented in PM .This se
tion is intended to provide support for the
laim that the systemof [Kamareddine, et. al , 2002℄ (with
ertain modi�
ations whi
h we willindi
ate) is in fa
t an a

urate formalization of the intentions of PM .At the outset, PM takes some sele
tion of the propositional
onne
tivesas primitive. We follow the original text and take negation and disjun
tionas primitive; the last edition of PM suggests the use of the She�er stroke.It should be noted that PM uses propositional variables, a feature notfound in [Kamareddine, et. al , 2002℄, and we in
lude propositional variablesin our formal language developed below. Propositional variables are notimportant for the investigation of type theory of propositional fun
tions(in fa
t, no propositional variable is allowed to appear in a propositionalfun
tion in our implementation) but they turn out to be indispensible inpra
ti
al formalization of reasoning about propositions.The \atomi
 propositions" of PM are of the form Rn(ai1 ; : : : ; ain), inwhi
h Rn is an n-ary predi
ate of individuals and the aij 's are names ofindividuals. The type of individuals is the sole base type of the system ofPM . The system of [Kamareddine, et. al , 2002℄ allows the
ase n = 0,whi
h would give us
onstant propositions R0(); PM does not allow this.Our software allows one to
hoose to allow or ex
lude 0-ary predi
ates.The \elementary propositions" of PM are formed by
ombining atomi
propositions with logi
al
onne
tives.Variables (taking individual values at this point) are now introdu
ed.Variables (when representing individuals)
an appear in the same
ontextsas individual
onstants. An elementary proposition
ontaining variables isan ambiguous proposition (its meaning is not determined until values areassigned to the variables).The next step is to introdu
e propositional fun
tions . A propositionalfun
tion is obtained by repla
ing ea
h variable x in an ambiguous elementaryproposition with x̂. The resulting expression denotes a fun
tion of as manyvariables as appear in it. The order in whi
h arguments are supplied to thefun
tion is determined by the alphabeti
al order of the variables appearingin it (in our notation, this is determined by the order of the numeri
alindi
es of the variables). For example, in an arithmeti

ontext x̂ < ŷ andb̂ > â would be the same propositional fun
tion (or at least would have thesame extension).PM de�nes quanti�ers in terms of propositional fun
tions. The senten
e

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 3(x)(�x) ((8x:�(x)) in our notation) is obtained by applying an operationof \generalization" to the propositional fun
tion �x̂. The oÆ
ial line inPM is that propositions in whi
h quanti�ed senten
es appear as argumentsof propositional
onne
tives do not really o

ur: a system of
ontextualde�nitions \de�nes away" senten
es whi
h apparently have this feature assenten
es in prenex normal form. It would be extraordinarily in
onvenientto a
tually take this view in a
omputer implementation, and fortunatelyPM presents an alternative formulation of logi
al rules for quanti�ed sen-ten
es whi
h allows the propositional fun
tions to take quanti�ed senten
esas arguments in the usual way. The one unfamiliar feature is that sin
ea propositional fun
tion must a
tually
ontain its variable argument, thes
ope of a quanti�er must in
lude a free o

urren
e of the quanti�ed vari-able for the senten
e to be well-formed, and our software does enfor
e this.Our formalization does not otherwise a
knowledge the dependen
e of quan-ti�ers on propositional fun
tions.Sin
e we take this view, we asso
iate propositional fun
tions �x̂ withquanti�ed senten
es �x of arbitrary
omplexity with free o

urren
es of thevariable x.We now dis
uss higher-order variables and propositional fun
tions. Thenotation of PM for arbitrary ambiguous propositions,
onsidered as propo-sitional fun
tions, is �x̂, �(x̂; ŷ), et
. Parentheses are not used to en
loseargument lists of length one, and argument lists of length 0 (yielding vari-able propositions �()) do not o

ur, though they do o

ur in the systemof [Kamareddine, et. al , 2002℄; permission to use su
h expressions
an beturned on or o� in our software. Note that variables � have been introdu
edrepresenting propositional fun
tions. An e

entri
ity of the PM notationis that when �x̂ o

urs as an argument to a propositional fun
tion, it iswritten �x̂, not �. Quanti�ers over fun
tions are written (�); (9�), thoughthere is an assertion in PM that this is an abbreviation for (�x̂); (9�x̂).This pen
hant for
omplex \variables" for propositional fun
tions seems tobe motivated by a desire to
learly indi
ate the status (for PM) of propo-sitional fun
tions as \in
omplete symbols".It seems to us that the implementation of this in more
ompli
ated
asesin PM is in
orre
t. For example, PM tells us (p. 52 of [Russell and White-head, 1967℄) that F (�x̂) is an ambiguous expression for a fun
tion with asingle argument whi
h is itself a propositional fun
tion of a single individ-ual variable. We are then told that a variable representing a fun
tion ofthis kind would be written F (�̂x̂) (with the
ir
um
ex over the �). Butthis seems wrong. The symbol �̂x̂ should be a
onstant, the name for thepropositional fun
tion A su
h that A(�x̂; a) = �a (this fun
tion is oftenmentioned as an example in PM , but notation for it is never given). SoF (�̂x̂) should represent the appli
ation of an ambiguous third-order fun
-tion to this
onstant se
ond-order fun
tion. A bound variable standing for

4 M. RANDALL HOLMESan arbitrary �rst order fun
tion should properly be written
�x̂ (with the
ir
um
ex over the entire
omplex variable), and a variable se
ond-orderfun
tion should be written F (
�x̂). It is not our purpose here to reform thenotation of PM , as we a
tually prefer the notation of [Kamareddine, et. al ,2002℄, but this problem ought to be noted.Constant propositional fun
tions do not appear in applied position eitherin PM or in [Kamareddine, et. al , 2002℄. The reason for this is thata
onstant propositional fun
tion is an expression with holes in it, and toapply the fun
tion is to substitute the arguments for the holes in the originalexpression. Our
omputer implementation does support syntax for
onstantfun
tion appli
ation without substitution, but we will not use it here.Be
ause of the very limited use of notation for propositional fun
tions inPM , we do not see examples of
onstant propositional fun
tions appearingas arguments to propositional fun
tions in PM , but it seems reasonablethat if one were to take the fun
tion F (x̂ = ŷ; a; b), and instantiate F with�̂(ẑ; ŵ), that one would obtain a = b. At any rate, this extension of notation(allowing
onstant propositional fun
tions to appear as arguments) is foundin [Kamareddine, et. al , 2002℄.Simple variables do not always represent individuals. PM takes advan-tage of \systemati
 ambiguity" (what we would
all \polymorphism"); thetype of variables whose type
annot be determined by examination of anexpression may be arbitrarily
omplex. But any variable whi
h appears inapplied position somewhere in a proposition or propositional fun
tion willappear with formal arguments whenever it appears as an argument to avariable fun
tion itself.We now dis
uss the types and orders of PM . PM does not anywhere givea formalized dis
ussion of its type system; in fa
t, there is no notation fortypes in PM ! But the informal dis
ussion is
lear enough that the intentionsof the authors
an be determined.Type is determined as follows. The simplest type is that of individuals.The type of a propositional fun
tion (abstra
ting out the order of the type,whi
h we will address in the next paragraph) is determined by the types ofits arguments.Every type has an order. The order of the type of individuals is 0. Theorder of a propositional fun
tion is one plus the maximum of the orders ofthe types of its arguments and the orders of the types of quanti�ed variables.It is the e�e
t of quanti�
ation on order that makes order a nontrivial
on
ept. The motivation of this
on
ept is that a quanti�ed senten
e isviewed as being in e�e
t an in�nite disjun
tion or
onjun
tion over the typeof the quanti�ed variable: thus it is important to prevent the possibility ofa propositional fun
tion
ontaining a quanti�er over its own type (or a more
omplex type), as this would lead to a formal
ir
ularity.Ramsey simpli�ed the type system of PM to eliminate the orders: this

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 5\simple theory of types" (
ontrasted with the \rami�ed theory of types" ofPM) is dis
ussed in [Kamareddine, et. al , 2002℄ and in this paper as well.Thus for any list of types of arguments to be supplied to a fun
tion, anin�nite sequen
e of fun
tion types of progressively higher order is obtained.PM gives a spe
ial status to \predi
ative" fun
tions, whose order is theleast possible given the orders of the types of the arguments of the fun
tion,and whose arguments are all in their turn of predi
ative types. A spe
ialnotation �!x is used for the appli
ation of fun
tions of predi
ative types.This notation is not used in [Kamareddine, et. al , 2002℄, but we introdu
eit here, with a generalization. For us, �!(x1; : : : ; xn) refers to a fun
tionof the arguments xi whose order is the least possible given the orders ofthe types of the xi's, but we do not require that the types of the xi's bepredi
ative themselves for this notation to be used.We
an now brie
y des
ribe the notation of [Kamareddine, et. al , 2002℄(our extension of this notation is formally des
ribed in the next se
tion). Inthe notation of [Kamareddine, et. al , 2002℄, all variables are simply letters(possibly with numeri
al suÆxes), and there are no
ir
um
exed variables.All o

urren
es of variables within propositional fun
tions are to be under-stood as
ir
um
exed (bound as arguments of the propositional fun
tion).The only ambiguity this introdu
es is that a top-level expression for a propo-sition looks the same as the expression for the
orresponding propositionalfun
tion. This ambiguity exists only at the top level, be
ause propositionsdo not o

ur as arguments to propositional fun
tions. It appears that aformalized version of the language of PM along the lines suggested above(with the
orre
tion to s
opes of
ir
um
exes) would be readily intertrans-latable with the language based on that of [Kamareddine, et. al , 2002℄whi
h we des
ribe formally in the next se
tion, mod o

asional renamingsof bound variables due to the fa
t that a bound individual variable anda bound fun
tion variable in di�erent
ontexts might take the same shapein this language and would have to be renamed before translation into theoriginal PM notation.3 PROPOSITIONS AS MERE SYNTAXThe logi
al world of PM is inhabited by individuals and propositional fun
-tions . We usually abbreviate the phrase \propositional fun
tion" as \pf",following [Kamareddine, et. al , 2002℄. In this se
tion, we formally des
ribethe notation for propositions and pfs.Notation for individuals is simpli
ity itself: an individual is denoted byone of the symbols a1; a2; a3; : : : (in the
omputer implementation, a1, a2,a3...).Before we present the notation for propositions, we need to introdu
evariables and primitive relation symbols. A variable is one of the symbols

6 M. RANDALL HOLMESx1; x2; x3; et
. (x1, x2, x3... in the
omputer implementation). (We
allthese \general" variables on the few o

asions when we need to distinguishthem from \propositional variables" introdu
ed below.) A primitive relationsymbol is a string of upper-
ase letters with a numeri
al subs
ript indi
atingits arity (in the paper, R1 and S2 are primitive relation symbols: these wouldbe R1 and S2 in the
omputer implementation).We note that we will freely use the word \term" in the sequel for any pie
eof notation, whether propositional notation, the name of an individual, ora general variable.Now we present the de�nition of notation for propositions. The notionof free o

urren
e of a (general) variable in a proposition is de�ned at thesame time.In the system of [Kamareddine, et. al , 2002℄, any notation for a proposi-tion is also notation for a propositional fun
tion. It is ne
essary here to ex-
lude propositional notations whi
h
ontain propositional variables (whi
hdo not o

ur in [Kamareddine, et. al , 2002℄). In PM (e.g., on p. 38 of [Rus-sell and Whitehead, 1967℄) it states
learly that a proposition must
ontaina free variable to be read as a propositional fun
tion, whi
h motivates theimplementation in our software of an option to ex
lude 0-ary relation sym-bols and pfs. If 0-ary pfs are ex
luded, a propositional notation will be apf notation i� it
ontains no propositional variables and at least one freegeneral variable. If 0-ary pfs are permitted, the
riterion is simply that thenotation
ontain no propositional variable.propositional variable: A variable taken from p1; p2; p3 : : : is a propo-sition (p1, p2, p3... in the
omputer implementation). This is apropositional variable. (There are no propositional variables in thesystem of [Kamareddine, et. al , 2002℄, but there are in PM). No(general) variables o

ur, free or otherwise, in a propositional vari-able.atomi
 proposition: A symbol Rn(v1; : : : ; vn)
onsisting of a primitiverelation symbol with arity n followed by a list of n arguments vi, ea
hof whi
h is either a variable xji or an individual
onstant aji , is anatomi
 proposition. (R0() is also an atomi
 proposition in the systemof [Kamareddine, et. al , 2002℄, and for us if we admit 0-ary pfs). Thefree o

urren
es of variables in an atomi
 proposition are exa
tly thetypographi
al o

urren
es of variables in it.negation: If P is a proposition, then :P (�P in the
omputer implemen-tation) is a proposition, the negation of the proposition P . The freeo

urren
es of variables in :P are pre
isely the free o

urren
es ofvariables in P .binary
onne
tives: If P and Q are propositions, then (P _Q) is a propo-sition. Disjun
tion is the only primitive binary propositional
onne
-

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 7tive in PM , but we will allow use of other
onne
tives: (P ! Q),(P ^ Q), (P � Q) with the usual meanings. In the
omputer imple-mentation, propositional
onne
tives are strings of lower
ase letters:(P v Q), (P implies Q), (P and Q), (P iff Q). The free o

ur-ren
es of variables in (P _ Q) are the free o

urren
es of variablesin P and Q; the rule is the same if a di�erent binary propositional
onne
tive is used.quanti�ers: If P is a proposition in whi
h the variable xi o

urs free (thisstipulation is what requires us to de�ne freedom of variables at thesame time as syntax of propositions), (8xi:P) is a proposition (thisis written [xi℄P in the
omputer implementation). The existentialquanti�er (9xi:P) (written [Exi℄P in the
omputer implementation)
an be introdu
ed by de�nition: the
omputer allows any string ofupper-
ase letters to be used as a quanti�er, and other quanti�ers
ould be introdu
ed. The free o

urren
es of variables in (8xi:P) arethe free o

urren
es of variables other than xi in P ; the rule would bethe same for any other quanti�er.In [Kamareddine, et. al , 2002℄, the stru
ture of the typing algorithmrequired the atta
hment of expli
it type labels to variables bound byquanti�ers. In our system, this is not ne
essary. This is
loser tothe situation in PM , where no type indi
es appear (though numeri
alindi
es representing orders do appear o

asionally).pf appli
ation (\matrix" and general): If xi is a variable and we aregiven an argument list A1; : : : ; An in whi
h ea
h Ai is of one of theforms aji (an individual
onstant), xji (a variable) or Pi (notation fora proposition, suitable to represent a pf), then xi(A1; : : : ; An) andxi!(A1; : : : ; An) are propositions. In the latter notation, the ex
lama-tion point indi
ates that the \order" of the type of the variable xi isas low as possible: this will be
lari�ed when types and orders aredis
ussed. The notation xi!(A1; : : : ; An) does not appear in the paper[Kamareddine, et. al , 2002℄; its use in this paper is a generalizationof the use of a similar notation for \matri
es" (predi
ative fun
tions)in PM . xi() is also a proposition in the system of [Kamareddine, et.al , 2002℄ (the variable xi represents a proposition in this
ase); xi()and xi!() are propositions for us as well if we admit 0-ary pfs. Thefree o

urren
es of variables in xi(A1; : : : ; An) or xi!(A1; : : : ; An) arethe head o

urren
es of xi and those Ai's whi
h are variables: note
arefully that the free o

urren
es of variables in those Ai's whi
hare propositional notations are not free o

urren
es of variables inxi(A1; : : : ; An) or xi!(A1; : : : ; An).
ompleteness of de�nition: All propositional notations are
onstru
tedin this way.

8 M. RANDALL HOLMESAs usual, an o

urren
e of a variable in a proposition whi
h is not free issaid to be bound. Note that a variable xi is not a propositional notation.There are no binders in notation for a propositional fun
tion, whi
h willgive our treatment a somewhat unfamiliar
avor. Sin
e we do not havehead binders to determine the order of multiple arguments, we allow theorder of the indi
es of the variables (whi
h we may refer to o

asionally as\alphabeti
al order") to determine the order in whi
h arguments are to besupplied to the fun
tion.We refer to the atomi
 propositions and the pf appli
ation terms as \log-i
ally atomi
" (propositional variables are also logi
ally atomi
, but they donot o

ur in pf notations), and to other terms as \logi
ally
omposite".4 THE DEFINITION OF SUBSTITUTION AND ITS FAILUREWe now give the re
ursive de�nition of simultaneous substitution of a list ofindividuals, variables and/or pfs Ak for variables xik in a proposition P , forwhi
h we use the notation P [Ak=xik ℄. The
lauses of the de�nition followthe syntax. It is required that the subs
ripts ik be distin
t for di�erentvalues of k.propositional variable: pj [Ak=xik ℄ = pj .atomi
 propositions: Let Rn(v1; : : : ; vn) be an atomi
 proposition. Forea
h vi and index k, de�ne v0i as Ak if vi is typographi
ally the same asxik ; de�ne v0i as vi if it is not typographi
ally the same as any xik . Ifany v0i is a propositional fun
tion, Rn(v1; : : : ; vn)[Ak=xik ℄ is unde�ned;otherwise Rn(v1; : : : ; vn)[Ak=xik ℄ is de�ned as Rn(v01; : : : ; v0n).negation: (:P)[Ak=xik ℄ = :(P [Ak=xik ℄)binary
onne
tives: (P _ Q)[Ak=xik ℄ = (P [Ak=xik ℄ _ Q[Ak=xik ℄). Therule is the same for any binary propositional
onne
tive.quanti�
ation: Let (8xj :P) be a quanti�ed senten
e (the rule is the samefor any quanti�er). De�ne A0k as xj in
ase ik = j and as Ak otherwise.Then (8xj :P)[Ak=xik ℄ is de�ned as (8xj :P [A0k=xik ℄).pf variable appli
ation: Let xj(V1; : : : ; Vn) or xj !(V1; : : : ; Vn) be a propo-sition built by pf appli
ation. De�ne B0 for any notation B as Ak if Bis typographi
ally xik and as B otherwise. xj(V1; : : : ; Vn)[Ak=xik ℄ isto be de�ned as x0j(V 01 ; : : : ; V 0n) and xj !(V1; : : : ; Vn)[Ak=xik ℄ is to bede�ned as x0j !(V 01 ; : : : ; V 0n) ex
ept in the
ase where x0j is a pf notationQ: in this
ase something rather more
ompli
ated happens. It willbe unde�ned unless there are pre
isely n variables whi
h o

ur free inQ. If there are n variables whi
h o

ur free in Q, de�ne tk so that

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 9xtk is the kth free variable in Q in alphabeti
al order. Then de�nexj(V1; : : : ; Vn)[Ak=xik ℄ or xj !(V1; : : : ; Vn)[Ak=xik ℄ as Q[V 0k=xtk ℄.There is a serious diÆ
ulty with this \de�nition". Consider :x1(x1),whi
h is a pf by our
urrent de�nitions. Substitute :x1(x1) for the variablex1 in the proposition :x1(x1) itself. We will obtain the negation of theresult of repla
ing x1 with :x1(x1) in x1(x1). Giving :x1(x1) the nameR for the moment, we see that the result of the latter substitution will beR[R=x1℄; but this is exa
tly the substitution we started out trying to make,so we have an in�nite regress. This shows that the proposed \de�nition" ofsubstitution is essentially
ir
ular { in the last
lause, there is no guaranteethat the instan
e of substitution Q[V 0k=xtk ℄ to be
arried out is \simpler" inany way than the original substitution x0j(V1; : : : ; Vn)[Ak=xik ℄ being de�ned,and our example shows that it need not be.It is hoped that the reader will noti
e that this is essentially Russell'sparadox of naive set theory. Our solution will be the oÆ
ial solution ofPM : we will impose a type system, under whi
h the term :x1(x1) willfail to denote a pf, and the problem will disappear. For the moment, wewithdraw the de�nition of substitution; we will return to it after we havepresented the type system.The self-
ontained approa
h to the de�nition of substitution taken heremay be
ontrasted with the rather elaborate invo
ation of �-
al
ulus in[Kamareddine, et. al , 2002℄. Though our de�nition appears to have failedat this point, the type system will allow us to give the de�nition above as alegitimate indu
tive de�nition. The reason we
an do this and the authorsof [Kamareddine, et. al , 2002℄
annot is that their de�nition of the typingalgorithm depends on the notion of substitution, and ours does not. (Thede�nition of our type algorithm does rely on the notion of substitution intonotations for types, but the de�nition of substitution into type notationsdoes not present su
h logi
al
ompli
ations).5 THE SIMPLE THEORY OF TYPESWe follow [Kamareddine, et. al , 2002℄ in presenting the simple theory oftypes without orders �rst, though histori
ally it was presented by Ramseyas a simpli�
ation of the rami�ed theory of types of PM .The base type of the system of PM is the type 0 inhabited by individu-als. (Nothing prevents the adoption of additional base types, or indeed theavoidan
e of
ommitment to any base type at all).All other types are inhabited by propositional fun
tions. In the simpletheory of types, the type of a pf is determined pre
isely by the list of typesof its arguments.We introdu
e notation for simple types:

10 M. RANDALL HOLMESIndividuals: 0 is a type notation.Propositions: () is a type notation (for the type of propositions).Propositional Fun
tions: If t1; : : : ; tn are type notations, (t1; : : : ; tn) isa type notation. (If 0-ary pfs are ex
luded, no
omplex type will have() as a
omponent; this will be enfor
ed by requiring ti 6= () here).Variable Types: For ea
h variable xi, we provide a type notation [xi℄.(This notation is an innovation for this paper: it represents an un-known (polymorphi
) type to be assigned to xi; these types may alsobe
alled \polymorphi
 types").Completeness of De�nition: All simple type notations are derived inthis way.No Nontrivial Identi�
ations: Constant types (those
ontaining no vari-able types as
omponents) are equal pre
isely if they are typographi-
ally identi
al.As is noted in [Kamareddine, et. al , 2002℄, there is no notation for typesin PM : this notation is apparently due to Ramsey (ex
ept for our innovationof variable types, whose purpose will be
ome
lear below).Our aim in this essay is to avoid the ne
essity of assigning types overtlyto variables, whi
h is truer to the approa
h taken in PM itself. It is usefulto
onsider what a system with expli
it type assignment would look like,though.The type assignment is represented as a partial fun
tion from terms totypes: �(xi) is the type to be assigned to xi, and more generally �(t) is thetype to be assigned to the individual
onstant, variable, or propositionalfun
tion t. Types in the range of � are
onstant types (they
ontain notype variables [xi℄). We require that bound variables be typed as well asfree variables, and identity of variables does for us imply identity of typeregardless of free or bound status. We stipulate that every variable is inthe range of � and that the inverse image of ea
h type under �
ontains in-�nitely many variables: this has the same e�e
t as providing in�nitely manyvariables labelled with ea
h type. The following rules simultaneously tellus whi
h terms are typable (have values under �) and how to
ompute thevalue of � if there is one. Fun
tions � satisfying these rules are
alled \typefun
tions on P", where P is a �xed proposition or propositional fun
tion.individuals: If xi appears as an argument in an atomi
 subproposition ofP , �(xi) = 0. �(ai) = 0 for any individual
onstant ai.propositional fun
tions: If Q is a propositional fun
tion appearing asa subterm of P , every subterm of Q has a value under � , and the

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 11n free variables of Q, indexed in in
reasing order, are xik , �(Q) =(�(xi1); : : : ; �(xin)). If Q
ontains no free variables, then �(P) = ().variable appli
ation: If xj(A1; : : : ; An) or xj !(A1; : : : ; An) is a subtermof P , then �(xj) = (�(A1); : : : ; �(An)).These rules have to be understood as additional restri
tions on whi
hterms are to be taken as well-formed: a term P is to be
onsidered well-formed i� there is a type fun
tion � on P . Noti
e that the value of � at everyterm (or its la
k of value) is
ompletely determined by the values of � atvariables. The pro
ess des
ribed terminates by indu
tion on the stru
tureof propositional notations: to
ompute the type assigned to any notationother than a variable or individual
onstant (or assess its typability), weappeal only to the types assigned to proper subterms of that notation, andwe are given types of variables and individual
onstants at the outset.A weakening of these
riteria for well-typedness is possible if we take intoa

ount the possibility of renaming bound variables. Variables with thesame typographi
 shape bound by di�erent binders
ould reasonably be al-lowed to have di�erent types. This is implemented to a limited extent in theSTT implementation: when a pf argument is typed, all information abouttypes of variables appearing in the pf is dis
arded, unless the polymorphi
type of the variable appears in the type of the pf (in whi
h
ase its typewill be uni�ed with types of the same variable in the larger
ontext). Thismeans that the same variable
an appear with two di�erent types, if one isbound inside a pf argument in whi
h the other is not bound. Su
h e�e
ts
annot be a
hieved with quanti�ed variables (variables bound by di�erentquanti�ers and bound in the same pf arguments must be assigned the sametype). It turns out to be in
onvenient to implement this in RTT : all o

ur-ren
es of the same variable, bound or free must have the same type. Thereis a pro
edure in the software whi
h will rename bound variables in su
h away that any variables whi
h
an be distin
t will be distinguished; if thisfun
tion is used on a pf before it is typed, one gets the e�e
t of the mostliberal approa
h to typing bound variables.We now pro
eed to develop a system for expressing and reasoning abouttype assignments to subterms of pfs, adopting rules on the basis of theirvalidity for an intended interpretation in terms of type fun
tions.There are four kinds of type judgments. In the following, P stands fora propositional or pf notation, t; u stand for types (variable types [xi℄ arepermitted to appear as types and as
omponents of
omplex types) and xistands for a general variable.ill-typedness: \P is ill-typed" is de�ned as \there is no type fun
tion �on P".propositional fun
tion type assignment: \P has type t" means \for

12 M. RANDALL HOLMESall type fun
tions � on P , �(P) = t", where any type [xi℄ appearingin t is interpreted as �(xi).variable type assignment: \xi has type t in P" means \for all type fun
-tions � on P , �(xi) = t", where any type [xj ℄ appearing in t is inter-preted as �(xj).type equality: \t = u in P" is de�ned as \for all type fun
tions � on P ,t = u", where any type [xj ℄ appearing in t or u is interpreted as �(xj).We now develop rules for dedu
tion about type judgments, showing thatthe rules are valid in the intended interpretation.We begin with the observation that the
onditions de�ning a type fun
-tion on P depend only on the appearan
es of variables in logi
ally atomi
subterms of P : these
onditions assign types to arguments appearing inatomi
 propositions, to propositional fun
tions, whi
h
an only appear asarguments of propositional fun
tion appli
ation terms, and to the head vari-ables of propositional fun
tion appli
ation terms. It follows immediatelyfrom this that � is a type fun
tion on P under pre
isely the same
ondi-tions under whi
h it is a type fun
tion on :P or on (8xi:P) (if the latter iswell-formed), sin
e these terms
ontain pre
isely the same logi
ally atomi
subterms. Further, it follows that any type fun
tion on (P _ Q) is also atype fun
tion on P and on Q, sin
e it will satisfy the
onditions on logi
allyatomi
 subterms of P and Q, sin
e the set of logi
ally atomi
 subterms of(P _ Q) is the union of the set of logi
ally atomi
 subterms of P and theset of logi
ally atomi
 subterms of Q.These fa
ts
an be expressed in terms of type judgments:negations: :P is ill-typed i� P is ill-typed. xi has type t in :P i� xi hastype t in P .quanti�
ation: (8xi:P) (if well-formed) is ill-typed i� P is ill-typed. xjhas type t in (8xi:P) i� xj has type t in P .binary propositional
onne
tives: If P or Q is ill-typed, (P _Q) is ill-typed (note that this is equivalent to \if there is a type fun
tion on(P _Q) there is a type fun
tion on P and a type fun
tion on Q"). Ifxi has type t in P or xi has type t in Q, then xi has type t in (P _Q).(Note that if �(xi) = t must be true for any type fun
tion � on somesubterm of P , it must be true for any type fun
tion � on P .)There are three kinds of o

urren
es of variables in logi
ally atomi
 sub-terms; the ways in whi
h these o

urren
es are typed are summarized bythe following rules:individual variables: If xi = Ak in Rn(A1; : : : ; An), then xi has type 0in Rn(A1; : : : ; An).

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 13applied variables: If Ai has type ti for ea
h i, then xj has type (t1; : : : ; tn)in xj(A1; : : : ; Ak) or xj !(A1; : : : ; Ak).argument variables: xi has type [xi℄ in P for any propositional fun
tionP (this expresses the fa
t that the appearan
e of a variable as anargument of a pf appli
ation term does not
onstrain its type at all).In this way a possibly variable type may be assigned to ea
h o

urren
eof a variable. This is
alled the \lo
al" type of the o

urren
e. However,more than one typographi
ally di�erent type may be assigned to the samevariable. For example, x1 is assigned type 0 and type [x1℄ in R1(x1)_x2(x1).Di�erent types assigned to the same variable will of
ourse be equal. We
an express this in terms of type judgments.multiple types: If xi has type t in P and xi has type u in P then t = uin P .variable type equations: If [xi℄ = t in P then xi has type t in P .De�nition: We assign an integer arity to ea
h type whi
h is not a typevariable. 0 has arity �1. () has arity 0. (t1; : : : ; tn) has arity n. Notethat a type may have variable type
omponents, but it will still havearity if it is not itself a type variable. Note also that types whi
h areequal will have equal arity if their arity is de�ned.type distin
tion: If t and u ea
h have arity and have distin
t arities andt = u in P , then P is ill-typed.absurdity: If P is ill-typed, then P has type t, t = u in P and xi has typet in P for any t, u, and xi (this is obviously
orre
t under the intendedinterpretation { we need it for a
ompleteness result).
omponentwise equality: If (t1; : : : ; tn) = (u1; : : : ; un) in P , then we
an infer ti = ui in P for ea
h i.type substitution: If xi has type t in P and xj has type u in P , then xjhas the type u[t=[xi℄℄ obtained by substituting t for all o

urren
es of[xi℄ in u.A
onsideration related to type substitution is that no type
an be ill-founded: the type of a variable xi
annot have [xi℄ as a proper
omponent.ill-foundedness: If xi has type t in P and t[t=[xi℄℄ 6= t, then P is ill-typed.Finally, we need the rule for typing propositional fun
tions.propositional fun
tion type: If the variables free in P , listed in orderof in
reasing index, are (xi1 ; : : : ; xin) and xik has type tk for ea
h k,then P has type (t1; : : : ; tn).

14 M. RANDALL HOLMESAn additional rule is stated whi
h we do not use in the
omputer im-plementation for simple type theory (though we do use it in rami�ed typetheory), but whi
h is needed for a
ompleteness result for type fun
tions aswe have de�ned them.type inheritan
e: If xi has type t in Ak, then xi has type t in either ofxj(A1; : : : ; An) or xj !(A1; : : : ; An).It should be
lear from our dis
ussion that ea
h of these rules is sound forthe intended interpretation. We will prove that this set of rules is
ompletefor the intended interpretation as well.Theorem: For ea
h propositional fun
tion P , there is a type t su
h that \Phas type t" is dedu
ible from the rules above and the types possibleas values �(P) for a type fun
tion � on P are pre
isely the typesobtainable by substituting an arbitrary type for ea
h type variableappearing in t.Proof of Theorem: We des
ribe the
omputation of the type t. The ideais to
onstru
t a set of judgments \xi has type ti" dedu
ible using thetype judgment rules whi
h satis�es all the rules for a type fun
tionex
ept for possibly
ontaining type variables: arbitrary instantiationof the type variables then yields a true type fun
tion.Begin the
onstru
tion of the set of judgments by
omputing the \lo-
al" type of ea
h o

urren
e of ea
h variable xi. We prove the theoremby stru
tural indu
tion: we assume that ea
h pf argument of a pf ap-pli
ation subterm of P
an be assigned a type satisfying the
onditionsof the theorem (this is needed to
ompute the \lo
al" types of headvariables of pf appli
ation terms).The only way in whi
h this
an fail to indu
e a type fun
tion on P(mod instantiation of type variables with
on
rete types) is if morethan one type is assigned to the same variable. We show how to resolvesu
h situations.If any variable is assigned types of di�erent arities, the pro
ess ter-minates with the judgment that P is ill-typed. If any variable xi isassigned a type whi
h
ontains [xi℄ as a proper
omponent, the pro
essterminates with the judgment that P is ill-typed.If xi is assigned any type t whi
h is not a variable type (in
luding
om-posite types with variable
omponents) repla
e all o

urren
es of [xi℄in types assigned to other variables with the type t. If xi is assignedtype [xj ℄ (j 6= i), repla
e all o

urren
es of the type xminfi;jg in typesassigned to all variables with the type xmaxfi;jg. This is justi�ed bythe type substitution rule. In the pro
ess des
ribed below,
arry outthese substitutions whenever a new type assignment is made. Noti
e

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 15that su
h a substitution will o

ur at most on
e for any given variablexi, sin
e it eliminates the target type everywhere. Of
ourse, if [xi℄ isintrodu
ed as a proper
omponent of the type of xi, terminate with ajudgment of ill-typedness.If xi is assigned types [xj ℄ and t in P , add the judgment \xj has type tin P" and eliminate the type assignment \xi has type [xj ℄ in P" (notethat all o

urren
es of [xj ℄ will then be eliminated if t is not a typevariable). In one spe
ial
ase we pro
eed di�erently: if xi is assignedtypes [xj ℄ and [xk ℄, we assign xi, xj , and xk the type xmaxfi;j;kg.If xi is assigned types (t1; : : : ; tn) and (u1; : : : ; un) in P , the judg-ments ti = ui follow for ea
h relevant i. From these equality judg-ments
ontinue to dedu
e further equality judgments in the same way.This pro
ess will terminate with either a judgment that P is ill-typedor a �nite nonempty set of nontrivial judgments of the form [xk℄ = vk,ea
h of whi
h has \xk has type vk" as a
onsequen
e, whi
h we addto our list of type assignments. Assign to xi the type whi
h results ifall these types xk are repla
ed with the
orresponding vk's in either ofthe two types being re
on
iled (the same type results in either
ase).Note that no new assignment to xi
an result, be
ause [xi℄
annot bea
omponent of the type assigned to xi unless P is ill-typed.This pro
ess must terminate. Ea
h step of the pro
ess des
ribed elim-inates at least one variable type [xi℄ from
onsideration or terminateswith a judgment of ill-typedness.When the pro
ess terminates, we will either have
on
luded that P isill-typed (and this judgment will be honest be
ause the rules are soundfor the intended interpretation) or we will have obtained a set of typeassignments to the variables appearing in P satisfying the
onditionsfor a type fun
tion: any instantiation of type variables appearing inthese types with
onstant types will give a type fun
tion on P .It is important to note that this is a type algorithm based on the quitestandard approa
h of type uni�
ation implemented, for example, inthe type
he
king of the
omputer language ML (a standard referen
eis [Milner, 1978℄).The algorithm a
tually implemented in our software for simple type the-ory di�ers from the theoreti
al algorithm in not using the rule dedu
ingtypes of variables from types of their o

urren
es in propositional fun
tionarguments. This means that the type of a variable xi in a propositional fun
-tion argument will only intera
t with the types of variables in the largerterm if the type [xi℄ appears as a
omponent type of the type of the ar-gument. This is legitimate, be
ause we
ould arrange for all variables ofthe propositional fun
tion argument (being bound) to be renamed to avoid

16 M. RANDALL HOLMES
ollisions with types of variables appearing elsewhere. However, variableswhose polymorphi
 type appears in the type assigned to the argument arenot
onsidered as being renamed.We
an now salvage the de�nition of substitution given above.Convention: We stipulate hen
eforth that propositional notations are well-formed i� they are well-formed under the original de�nition and thejudgment \P is ill-typed"
annot be dedu
ed using the algorithm givenabove, in the version whi
h impli
itly allows renaming of bound vari-ables appearing in pf arguments but not in their polymorphi
 types.Theorem: P [Ak=xik ℄, de�ned as above, will be well-de�ned as long as thereis a �xed set of substitutions � of types for polymorphi
 type variablessu
h that the type of ea
h Ak is the result of applying � to the typeof xik in P .Proof of Theorem: We only need to
onsider the
ase in whi
h a propo-sitional fun
tion Q is substituted for the variable xj in either of theterms xj(A1; : : : ; An) or xj !(A1; : : : ; An).We reprodu
e the problemati

lause from the de�nition of substitu-tion.\Let xj(V1; : : : ; Vn) or xj !(V1; : : : ; Vn) be a proposition built by pfappli
ation. De�ne B0 for any notation B as Ak if B is typograph-i
ally xik and as B otherwise. We de�ne xj(V1; : : : ; Vn)[Ak=xik ℄ asx0j(V 01 ; : : : ; V 0n) and xj !(V1; : : : ; Vn)[Ak=xik ℄ as x0j !(V 01 ; : : : ; V 0n) ex
eptin the
ase where x0j is a pf notation Q: in this
ase something rathermore
ompli
ated happens. It will be unde�ned unless there are pre-
isely n variables whi
h o

ur free in Q. If there are n variableswhi
h o

ur free in Q, de�ne tk so that xtk is the kth free variablein Q in alphabeti
al order. Then de�ne xj(V1; : : : ; Vn)[Ak=xik ℄ orxj !(V1; : : : ; Vn)[Ak=xik ℄ as Q[V 0k=xtk ℄."The type of the
onstant propositional fun
tion Q being substitutedfor xj in P is the image under the �xed substitution � of the type ofxj in P , and so is the image under � of a proper
omponent of thetype of P . Thus, by a stru
tural indu
tion on types, the substitutionQ[V 0k=xtk ℄) into Q used to de�ne the substitution into P su

eeds,be
ause the image under � of the type of Q is simpler than the imageunder � of the type of P . Note that be
ause P is well-typed, thatsubstitution Q[V 0k=xtk ℄) will meet the typing
onditions we require forsubstitutions: the fa
t that Q has the same type that xj has in P ,ea
h V 0k has the same type as Vk in P , and xj(V1; : : : ; Vn) is a subtermof P is suÆ
ient to see this.So the problem of substitution is solved by the adoption of simple typetheory.

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 176 THE RAMIFIED THEORYThe motivation behind the rami�ed theory is as follows. The type of apropositional fun
tion in STT is determined by the types of its arguments,and all types of its arguments must be simpler than its type: understandingthe meaning of the pf involves understanding the entire range of the typesof its arguments, so it
annot without
ir
ularity be an item in one ofthose types. But it
an further be said that understanding the meaningof a pf involves understanding the entire type over whi
h any quanti�edvariable appearing in the fun
tion ranges, so the type of a pf must be more
omplex than that of any variable over whi
h quanti�
ation o

urs in thepf. More
on
retely, Russell suggests in PM that a quanti�ed senten
e isto be understood as expressing an in�nitary
onjun
tion or disjun
tion inwhi
h senten
es referring to every obje
t of the type quanti�ed over musto

ur. If quanti�ed senten
es are to be interpreted in this way, then theappearan
e of a quanti�ed variable in a pf with the same type as the pfor a more
omplex type would lead to formal
ir
ularity on expansion toin�nitary form.The restri
tion is enfor
ed in RTT by adding to ea
h type a new feature,a non-negative integer
alled its \order". The order of type 0 (the type ofindividuals) is 0 (zero). The type () of propositions in simple type theoryis partitioned into types ()n for ea
h natural number n, where the order nwill be the least natural number greater than the order of the type of anyvariable whi
h o

urs in the proposition (in
luding quanti�ed variables). Apf notation P
ontaining n free variables xik (listed in in
reasing order) withtypes tk will be assigned type (t1; : : : ; tn)m, where m is the smallest naturalnumber greater than the order of any of the types tk and the order of thetype of any variable quanti�ed in P . A similar rule applies to the typingof head variables xi in expressions xi(A1; : : : ; An) or xi!(A1; : : : ; An): thetype of xi will be (t1; : : : ; tn)r where ea
h tk is the type of Ak , and theorder r is larger than the orders of the tk's; in the term xi!(A1; : : : ; An),the order r must be the smallest order larger than all orders of tk's.We begin the formal treatment with the de�nition of formal polymorphi
orders.natural number: A natural number n is a polymorphi
 order.polymorphi
 variable: For ea
h variable xi, the symbol jxij is a poly-morphi
 order.addition: The formal sum of a polymorphi
 order and a natural numberis a polymorphi
 order.maximum: The formal maximum of two polymorphi
 orders is a polymor-phi
 order.

18 M. RANDALL HOLMESsimpli�
ation: Addition is understood to be
ommutative and asso
iative.Ea
h sum appearing in a polymorphi
 order is of the form jxij +m:two polymorphi
 variables are never added, so there is no need formore
omplex sums.Maximum is understood to be
ommutative and asso
iative. Theidentity max(a; b) +
 = max(a+
; b+
)
an be used to
onvert anypolymorphi
 order to a maximum of sums. No more than one naturalnumber not added to a polymorphi
 order needs to appear in su
ha maximum of sums (be
ause max(m;n)
an be simpli�ed to eitherm or n). No more than one sum involving the same jxij needs toappear, sin
e max(jxij +m; jxij + n) = jxij +max(m;n). So there isa unique
anoni
al form for polymorphi
 orders, the maximum of asingle natural number (if the natural number is 0 it is omitted) anda list of expressions jxij + m (if m is 0 it is omitted) presented inas
ending order of the parameter i. Adding a natural number to su
ha standard form and taking the maximum of two su
h standard formsare readily
omputable operations.order of polymorphi
 orders: If m and n are polymorphi
 types, we saym > n when max(m;n+1) = m. This is not a total order, of
ourse.substitution into orders: The result u[m=jxij℄ of substituting a polymor-phi
 order m for the polymorphi
 order jxij in a polymorphi
 order uis the result of repla
ing the o

urren
e of jxij in u (if there is one:otherwise the result of the substitution is u) with m, then simplifying.Substitution into orders is needed to handle
hanges in order whi
htake pla
e when a more detailed type is substituted for a polymorphi
type variable.Now we are in a position to de�ne rami�ed types (and their orders, si-multaneously).individuals: 0 is a rami�ed type of order 0.propositions: If n is a polymorphi
 order, ()n is a rami�ed type of ordern.pfs: If t1; : : : ; tn are rami�ed types and m is a polymorphi
 order greaterthan the order of any of the types tk, then (t1; : : : ; tn)m is a rami�edtype of order m.polymorphi
 types: For ea
h variable xi, there is a rami�ed type [xi℄ oforder jxij.There are two possible ways of understanding the relationships betweenthe orders. Expli
it assertions in PM support the idea that any two types

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 19must be disjoint, and so two types (t1; : : : ; tn)r and (t1; : : : ; tn)s with rnot equal to s must be disjoint. This is the view we take here. There isa possible alternative approa
h, taken up by other workers (see [Peressini,1997℄), that (t1; : : : ; tn)r � (t1; : : : ; tn)s holds when r < s. We do not takethis view, but we found
onsideration of this alternative view very useful in
onstru
ting early versions of the type inferen
e algorithm for RTT .We present the rules for a term-typing fun
tion � as above. Noti
e thathere the orders will be �xed non-negative integers: polymorphi
 orders ap-pear in our algorithm be
ause the stru
ture of terms gives insuÆ
ient in-formation to �x orders pre
isely in some
ases.individuals: If xi appears as an argument in an atomi
 proposition, �(xi) =0. �(ai) = 0 for any individual
onstant ai.pfs: If P is a propositional fun
tion and the n free variables of P , indexedin in
reasing order, are xik , �(P) = (�(xi1); : : : ; �(xin))m, where mis one greater than the maximum of the orders of the types of thevariables appearing in P (free or bound, outside proper propositionalfun
tion arguments). If P
ontains no free variables, then �(P) = ()m,where m is one greater than the maximum of the orders of the typesof the variables quanti�ed over in P .pf appli
ation terms: If xj !(A1; : : : ; An) is a term, then, stipulating thatm = 1 +maxf�(A1); : : : ; �(An)g, �(xj) = (�(A1); : : : ; �(An))m.If xj(A1; : : : ; An) is a term, then �(xj) = (�(A1); : : : ; �(An))m, forsome order m stri
tly larger than the order of ea
h �(Ak).Noti
e that in the rami�ed theory there is an additional
ase where thetype of a variable
annot be rigidly dedu
ed from its
ontext: as before, thetype of a variable argument to a variable propositional fun
tion is polymor-phi
, and in addition the order of the type of xj in a term xj(A1; : : : ; An)only has a lower bound, not a �xed value.As above, we will regard a pf as well-typed when there is a type fun
tion� whi
h assigns a type to that pf. Some pfs will have many possible types,as above, whi
h will be indi
ated by the appearan
e of type variables [xi℄(and order variables jxij) in the type resulting from the algorithm. Asabove, a more liberal type algorithm
ould be obtained by requiring thatbound variables be renamed to be distin
t from one another and from freevariables when this preserves meaning, but this is not implemented in oursoftware. There is a tool whi
h will rename all bound variables in su
h away that they are typographi
ally distin
t whenever possible; this
an beapplied before typing to get the most general typing
onditions for a pf.We now des
ribe the rules of type inferen
e for RTT . We in
lude onlythose
lauses whi
h di�er from the
orresponding
lauses in the STT algo-rithm.

20 M. RANDALL HOLMESapplied variables: If Ai has type ti for ea
h i, and the order of tk is okfor ea
h k, then xj has type (t1; : : : ; tn)r in xj !(A1; : : : ; Ak), where ris 1+max(o1; :::; ok), and xj has type (t1; : : : ; tn)s in xj(A1; : : : ; Ak),where s is max(jxj j; o1 + 1; : : : ; on + 1). (In RTT , we distinguish thetwo kinds of pf appli
ation term).De�nition: We assign an integer arity to ea
h type whi
h is not a typevariable. 0 has arity �1. () has arity 0. (t1; : : : ; tn)m has arity n.Note that a type may have variable type
omponents, but it will stillhave arity if it is not itself a type variable. Note also that types whi
hare equal will have equal arity if their arity is de�ned. (We reprodu
ethis de�nition be
ause of the mention of order, though order does nota�e
t arity).
omponentwise equality (identi�
ation of
omponents): If we have(t1; : : : ; tn)m1 = (u1; : : : ; un)m2 in P , then ti = ui in P for ea
h i.It is important to note that substitution of a type t for a type variable[xi℄ also has the e�e
t of substituting the order of t for all o

urren
es ofthe order variable jxij.ill-foundedness: If xi has type t in P and t[t=[xi℄℄ 6= t, then P is ill-typed.(Re
all that the
omputation of t[t=[xi℄℄ in
ludes the redu
tion of itsorder to standard form; this resolves the apparent
ir
ularity of the
ase in our algorithm where we assign a variable xi a type t whoseorder is a maximum of orders in
luding jxij; in t[t=[xi℄℄, the order of tis apparently modi�ed by the repla
ement of jxij with the entire orderof t, but on simpli�
ation the order of t is restored to its original form,so in fa
t t[t=[xi℄℄ = t in this
ase and no judgment of ill-typednessresults.)As above, we need the rule for typing propositional fun
tions. This ruleneeds to take into a

ount the e�e
t of quanti�ed variables on order.propositional fun
tion type: If the variables free in P , listed in orderof in
reasing index, are (xi1 ; : : : ; xin), and the variables quanti�edin P are (xin+1 ; : : : ; xim), xik has type tk for ea
h k and type tkhas order ok for ea
h k, then P has type (t1; : : : ; tn)r, where r =1 +max(o1; : : : ; om).We need the following rule and we do not subsequently relax it as insimple type theory.type inheritan
e: If xi has type t in Ak, then xi has type t in bothxj(A1; : : : ; An) and xj !(A1; : : : ; An).

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 21It should be
lear from our dis
ussion that ea
h of these rules is soundfor the intended interpretation. However, this set of rules is not
omplete.We now introdu
e the notion of \bounding variable" of an order.De�nition: If an order n is presented in the standard formmax(n0; n1 + jxi1 j; : : : ; nk + jxik j);and some nj with (j 6= 0) is equal to 0, then xij is said to be a\bounding variable" of n.It is important to observe that the only orders dedu
ed by any of ourrules whi
h
an have bounding variables are the polymorphi
 orders jxijthemselves and the orders assigned to xj in terms xj(A1; : : : ; An), whi
hhave bounding variable jxj j. Any other polymorphi
 order that we assign isthe su

essor 1 + n of some order n, and it is
lear that no su

essor order
an have a bounding variable.Further, the following rule
learly holds for types assigned by our algo-rithm:bounding variables: If xi has type t in P and the order of t has boundingvariable xj , then xj has type t in P .The reason for this is that any rule whi
h assigns a type with boundingvariable xj in the �rst instan
e a
tually assigns this type to the variable xj .Further, this implies that we
an assume that any type with a boundingvariable has only one bounding variable.We present an in
omplete but often su

essful algorithm for
omputa-tion of the type of a proposition or propositional fun
tion P in RTT . Thisalgorithm follows the STT algorithm very
losely.Provisional algorithm: We des
ribe the
omputation of the type t. Theidea, as in the STT algorithm, is to
onstru
t a set of judgments \xihas type ti" dedu
ible using the type judgment rules whi
h satis�esall the rules for a type fun
tion ex
ept that types may have variable
omponents: arbitrary instantiation of the type variables then yieldsa true type fun
tion.Begin the
onstru
tion of the set of judgments by
omputing the \lo-
al" type of ea
h o

urren
e of ea
h variable xi. The algorithm isre
ursive in the same way as the STT algorithm: we assume that ea
hpf argument of pf appli
ation terms has been su

essfully assigned atype.As in the STT algorithm, what remains is to unify distin
t typesassigned to the same variables (or show that they
annot be uni�ed).

22 M. RANDALL HOLMESIf any variable is assigned types of di�erent arities or if any variablexi is assigned a type whi
h
ontains [xi℄ as a proper
omponent, thepro
ess terminates with the judgment that P is ill-typed. Note that ifxi is assigned a type with bounding variable jxij, this does not lead toforbidden
ir
ularity: the only o

urren
e of [xi℄ in the type assignedto xi is the o

urren
e of jxij in its order. Substitution of the typet of xi for [xi℄ in t has the e�e
t of repla
ing jxij with the order of tin the order of t, and after simpli�
ation the order is left the same.Order variables
an lead to fatal
ir
ularity, though: if xi is assigneda type t with an order whi
h is a maximum of orders one of whi
h isjxij+ r, with r 6= 0, then t[t=[xi℄℄ 6= t and we
an
on
lude that P isill-typed.If xi is assigned any type t whi
h is not a variable type (in
luding
omposite types with variable
omponents) repla
e all o

urren
es of[xi℄ in types assigned to other variables with the type t. Note thatthis does not ne
essarily eliminate all o

urren
es of xi: if the type ofxi has bounding variable xi, o

urren
es of jxij will remain. If xi isassigned type [xj ℄ (j 6= i), pro
eed as in the STT algorithm.Noti
e that su
h substitutions will usually o

ur at most on
e for anygiven variable xi, sin
e the target type is usually eliminated every-where. Of
ourse, if [xi℄ is introdu
ed as a proper
omponent of thetype of xi, terminate with a judgment of ill-typedness. The ex
eptionin whi
h the variable xi is assigned a type with bounding variable xiremains to be
onsidered. Noti
e that as soon as a variable is assignedany type whi
h does not have a bounding variable, any type whi
hthat variable may have been assigned whi
h had a bounding variablewill be
onverted to a form whi
h does not have a bounding variable.If xi is assigned types [xj ℄ and t in P , add the judgment \xj has typet in P" and eliminate the type assignment \xi has type [xj ℄ in P",ex
ept in two spe
ial situations whi
h follow. Note that all o

urren
esof [xj ℄ will then be eliminated if t is not a type variable and does nothave order with bounding variable xj . In these spe
ial
ases where[xj ℄ would not be eliminated we pro
eed di�erently: if xi is assignedtypes [xj ℄ and [xk ℄, we assign xi, xj , and xk the type xmaxfi;j;kg. If thetype t has bounding variable xj , it must be the
ase that the judgment\xj has type t in P" has already been made. In this
ase we de�ne t0as t[[xmaxfi;jg℄=xj ℄ and assign this type to both xi and xj , repla
ingall o

urren
es of [xi℄ and [xj ℄ in all type judgments with [xmaxfi;jg℄.If xi is assigned types (t1; : : : ; tn)m1 and (u1; : : : ; un)m2 in P , thejudgments ti = ui follow for ea
h relevant i. From these equalityjudgments
ontinue to dedu
e further equality judgments in the sameway. This pro
ess will terminate with either a judgment that P isill-typed or a �nite nonempty set of nontrivial judgments of the form

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 23[xk℄ = vk, ea
h of whi
h has \xk has type vk" as a
onsequen
e. Assignto xi the types whi
h result if all these types xk are repla
ed withthe
orresponding vk's in ea
h of the two types being re
on
iled (theresulting types will not ne
essarily be the same, be
ause the ordersmay be di�erent). Note that no new assignment to xi
an result,be
ause [xi℄
annot be a
omponent of the type assigned to xi unlessP is ill-typed.If xi is assigned types (t1; : : : ; tn)m1 and (u1; : : : ; un)m2 in P , or ifxi is assigned types ()m1 and ()m2 , the orders m1 and m2 should bethe same. In this algorithm, we only use this information if one orboth of the orders m1 or m2 has a bounding variable. If m1 hasbounding variable xj and m2 has no bounding variable, we make theadditional judgment \xj has type (u1; : : : ; un)m2 in P" and repla
eall o

urren
es of jxj j with m2 (any o

urren
es of [xj ℄ as a typeshould already have been eliminated). We pro
eed symmetri
ally ifm2 has a bounding variable and m1 has no bounding variable. Ifm1 and m2 have bounding variables xj and xk respe
tively, we makethe additional judgments \xj has type (u1; : : : ; un)m2 in P" and \xkhas type (t1; : : : ; tn)m1 in P", then repla
e all o

urren
es of jxj jand jxkj (there should be no frank o

uren
es of [xj ℄ or [xk ℄) in typejudgments with jxmaxfj;kgj. Both of these maneuvers are justi�ed bythe bounding variable rule.This pro
ess must terminate. Ea
h step of the pro
ess des
ribed elim-inates at least one variable type [xi℄ from
onsideration (along withall o

urren
es of its order jxij) or terminates with a judgment ofill-typedness.When the pro
ess terminates, we will either have
on
luded that P isill-typed (and this judgment will be honest be
ause the rules are soundfor the intended interpretation) or we will have obtained a set of typeassignments to the variables appearing in P almost satisfying the
on-ditions for a type fun
tion: the diÆ
ulty is that the same variable maybe assigned distin
t rami�ed types
orresponding to the same simpletype but having typographi
ally di�erent orders. If ea
h variable hasbeen assigned a unique type by the end of the pro
ess, then the al-gorithm su

eeds in de�ning a type fun
tion � up to assignments of
on
rete type values to type variables, as above.This algorithm is still based on the quite standard approa
h of typeuni�
ation implemented, for example, in the type
he
king of the
om-puter language ML (see [Milner, 1978℄).The algorithm above is sound but in
omplete. If it yields a type, it willalways be a
orre
t type, but there are propositions and pfs whi
h
annotbe typed by this algorithm but whi
h
an be read as well-typed terms of

24 M. RANDALL HOLMESRTT . In pra
ti
e, the algorithm is quite good; it is not easy to write atypable term of RTT whi
h it will not type (though we shall present someexamples).A
omplete algorithm requires uni�
ation of orders. This will departfrom the usual methods of type
he
king, be
ause it will require reasoningabout numeri
al inequalities.It might seem that we would need a new kind of type judgment to ex-press equations between polymorphi
 orders, but in fa
t \order equalityjudgments" of the form \m = n in P", where m and n are polymorphi
orders, are equivalent to type equality judgments \()m = ()n in P". Wewill allow ourselves to abbreviate type equality judgments as order equalityjudgments when this
an
ause no
onfusion.Obviously sound additional rules are
omponentwise equality (order): If (t1; : : : ; tn)m1 = (u1; : : : ; un)m2 inP then ()m1 = ()m2 in P .order substitution: If xi has type t in P and m is the order of t, and()p = ()q in P holds, then ()p[m=jxij℄ = ()q[m=xi℄ in P holds.We outline our basi
 approa
h to reasoning about order uni�
ation. Anorder equality judgment in standard form will take the formmaxfn0; n1 + jxi1 j; : : : ; nk + jxik jg = maxfm0;m1 + jxj1 j; : : : ;ml + jxjl jg:This is equivalent to a disjun
tion of
onditions, ea
h of whi
h asserts theequality of one of the terms of the �rst maximum with one of the terms of these
ond maximum along with the inequalities asserting that the two
hosenterms are greater than or equal to the other terms of the respe
tive maximafrom whi
h they are taken. If one or both of the orders has a boundingvariable, the bounding variable is the only possible maximum
hosen (whi
hsimpli�es the
al
ulation in these
ases by redu
ing the number of
ases).All of the resulting statements
an be expressed using assertions of theform jxij � n, jxij � n, or jxij � jxj j � n, where n is an integer. Anyequation or inequality between terms of the forms n0 or nk + jxik j
an be
onverted to a
onjun
tion of inequalities of the forms above by substra
tingan appropriate quantity from ea
h side of the equality or inequality and
onverting an equation to the
onjun
tion of two inequalities in the obviousway. Any assertion of the form jxij � r where r < 0 (whi
h will also beobtained (e.g.) from an equation jxij+m = jxij + n where m 6= n)
an beused to
on
lude that an entire
onjun
tion is false.We now des
ribe a way to
ompute
omplete
onditions for well-typednessof a term from a number of order equality judgments. Convert ea
h orderequality judgment to a disjun
tion of
onjun
tions of inequalities of theforms des
ribed above. A
onjun
tion of disjun
tions of
onjun
tions is
onverted to a disjun
tion of
onjun
tions in the obvious way.

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 25Now ea
h
onjun
tion of inequalities is pro
essed separately. Present allinequalities in a uniform way by rewriting jxij � n and jxij � n as jxij�0 �n and 0 � jxij � �n, respe
tively. Every inequality is then written in theform A�B � n. For ea
h xi whi
h appears, in
lude 0� jxij � 0, 0� 0 � 0and jxij�jxij � 0 in the
onjun
tion. Wherever A�B � n1 and A�B � n2both appear, retain just A � B � minfn1; n2g. Wherever A � B � m andB�C � n both appear, add A�C � m+n to the
onjun
tion. Apply theseoperations repeatedly if ne
essary. If any
onjun
t of the form jxij � 0 � rwith r < 0 or jxij � jxij � r with r < 0 appears,
on
lude that the
onjun
tis false. We
laim that this pro
edure will produ
e a
anoni
al
omplete
onjun
tion equivalent to the
onjun
tion we started with.Lemma: Any
onjun
tion of a set of inequalities of the form A � B � n,where A and B are either 0 or variables with natural number values, is
onverted to a
anoni
al equivalent form by the pro
edure des
ribedabove.Proof of Lemma: We will refer to items su
h as A and B above as \liter-als" for the moment. In our appli
ation, literals are 0 and polymorphi
orders jxij of variable types.We
laim �rst that in
onsisten
y of the
onjun
tion of a set of inequal-ities is always dete
ted by this pro
edure. Suppose we have a partialassignment of values to literals (with 0 assigned the value 0) and wewish to
onsider possible values of a literal A to whi
h a value has notbeen assigned. The
onditions of forms A � B � n, C � A � m forB and C to whi
h values have been assigned determine intervals inwhi
h the value A
an lie. Now intervals have the logi
ally interestingproperty that any set of intervals whi
h interse
t pairwise a
tuallyhave nonempty interse
tion. If it is not possible to assign a value toA
onsistent with given inequalities involving A and assignments ofvalue, then there must be a pair of intervals A�B � n, C�A � m forB and C to whi
h values have been assigned whi
h do not interse
t(as intervals of the same kind obviously always interse
t). The valuesassigned to B and C then
annot satisfy C�B � m+n, whi
h is oneof the equations added to the set by our pro
edure, as well as being alogi
al
onsequen
e of the original
onjun
tion, so the values assignedto B and C were already in
onsistent with the
onjun
tion of inequal-ities. This means that if a
onjun
tion of literals is a
tually satis�able,then we
an pro
eed by
ompleting the
onjun
tion as above, and us-ing the
ompleted
onjun
tion and the values assigned previously toother literals to
hoose a possible value for the ea
h literal; this willwork regardless of the order in whi
h the literals are
onsidered.We
laim further that two equivalent
onjun
tions will be expandedto the same form by this pro
edure. This is easy: suppose one
on-

26 M. RANDALL HOLMESjun
tion, when expanded,
ontains B� 0 � n0 and the other
ontainsB � 0 � n1 (n0 6= n1). It follows that the range of values whi
h
anbe assigned to B at the very �rst step of the pro
ess of assignmentsof values to literals is di�erent, so the original
onjun
tions
annothave been equivalent. Now suppose that one
onjun
tion, when ex-panded,
ontains B � A � n0 and the other
ontains B � A � n1(n0 6= n1). Now assign a value to A (
ompatible with its bound rela-tive to 0). The range of values possible to assign to B (the bound onwhose value relative to 0 being the same in both expanded
onjun
-tions) will be di�erent for the two expanded forms, whi
h shows thatthe two expanded
onjun
tions
annot be equivalent, so the original
onjun
tions were not equivalent.Conjun
tions
an then be simpli�ed by eliminating redundant
onjun
ts(a
onjun
t is redundant if eliminating the
onjun
t then
omputing the
anoni
al form gives the same result as
omputing the
anoni
al form ofthe original
onjun
tion).On
e ea
h disjun
t is
omputed, identi
al disjun
ts or
onjun
tions weakerthan other disjun
ts
an be re
ognized and eliminated (by
omparing
anon-i
al forms) and a simpli�ed form of the disjun
tion of
onditions under whi
hthe term is well-typed
an be
omputed (or ill-typedness
an be reported ifall
onjun
ts redu
e to falsehood).This
an be applied to produ
e a
omplete algorithm: use the provisionalalgorithm des
ribed above to generate a list of type assignments whosefailures of uniqueness are indu
ed only by failures to unify order, then applythe pro
edure des
ribed above to redu
e the order equality judgments thatare required to arithmeti
 assertions about polymorphi
 orders. Note thatunder the resulting
onditions it is possible to sele
t any of the types givenfor ea
h variable or propositional fun
tion as
orre
t if the
onditions are
onsistent, sin
e all types given for any one obje
t will be equal under the
onditions derived from the uni�
ation of the orders.A notable point about the algorithm is that the simpli�
ation of thearithmeti

onditions on polymorphi
 orders made possible by the use of
anoni
al forms for
onjun
tions
ombined with the elimination of redun-dant
onjun
ts and disjun
ts gives quite manageable output (earlier versionswhi
h
omputed and displayed things more lazily gave unmanageably largedisplays whi
h were not useful in pra
ti
e).The reasoning above was informal arithmeti
al reasoning. It is useful toobserve that it
an be
oded into the language of order equality type judg-ments. We do not do this in the software: the type inferen
e algorithm justimplements the provisional algorithm des
ribed above while the inequalitiesare handled by a dedi
ated representation of quite
onventional reasoningabout arithmeti
 inequalities. So we feel no need to do more than sket
h theway in whi
h this reasoning
ould be in
orporated dire
tly into the system

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 27of reasoning about types. We use the language of order equality judgments,but re
all that these abbreviate spe
ial type equality judgments.order inequality: Judgments su
h as \m � n in P" are the same as\n =maxfm;ng in P", and so require no expansion of our language of typejudgments.type subtra
tion: The judgments we have found it
onvenient to write as\A�B � n in P"
an be expressed formally as \A � B + n in P".relations to zero: The judgments 0�m � 0 and m�m � 0 assumed forall orders in the algorithm above expand to judgments automati
allymade by the algorithm for simplifying polymorphi
 orders.0�m � 0 � 0 � 0 +m � 0 � m � m = maxf0;mgm�m � 0 � m � 0 +m � m = maxfm;mgequations between maxima: \maxfm;ng = p" implies \(n � m andn = p) or (m � n and m = p)". Of
ourse, this needs to be applied onboth sides of the equals sign. It also requires us to expand our languageto allow the handling of
ases: the distributivity of
onjun
tion overdisjun
tion will also be needed if this is to be
ompletely formalized.Note that the spe
ial treatment of orders with bounding variables
anbe justi�ed using the type judgment rule for bounding variables givenabove
ombined with order uni�
ation.\triangle inequality" steps: The dedu
tion from judgements A�B � mand B � C � n to A� C � m+ n is justi�ed as follows: we a
tuallyread A�B � m as A � B+m: from A � B+m and B � C+n dedu
eA+B � B +C +m+ n, and from this dedu
e A � C +m+ n usingthe rules \dedu
e m+ p � n+ q from m � n and p � q" and \dedu
em � n from m+p � n+p". These rules doubtless
an be \simpli�ed"to
orresponding rules about equations, but the basi
 shape of theadditional inferen
e rules needed to justify triangle inequality steps is
lear.absurdity: Judgments of the form m � �r where r > 0 or m �m � �rwhere r > 0 signal absurdity: this is implemented by rules assertingthat from 0 = m+ r or m = m+ r (where r > 0) in P we dedu
e thatP is ill-typed.7 RELATIONS TO OTHER WORKIn this se
tion we dis
uss the relationship of the development in this paperto the development in [Kamareddine, et. al , 2002℄. We are not familiar

28 M. RANDALL HOLMESwith the details of any other attempt to faithfully implement the theory oftypes of PM in modern terms: we are familiar with some other treatmentsof the rami�ed theory of types, but they seem to be more remote from thea
tual usage of PM .The system of [Kamareddine, et. al , 2002℄ uses a di�erent (and moreusual) kind of
ontext than our system. The form of a type judgment ofthe system of [Kamareddine, et. al , 2002℄ is � j= f : t, where f is a term, tis the type assigned to that term, and � is a �nite fun
tion from variablesto types representing types assigned to variables in the
ontext. In oursystem, a type judgment about an entire term (propositional notation) hasno
ontext, while type judgments about variables have as
ontext the termin whi
h they appear. To make
omparison easier, we reprodu
e in itsentirety (though
ertainly without full explanation) the re
ursive de�nitionof type judgments from [Kamareddine, et. al , 2002℄. We will refer ba
k tothis in the following se
tion of examples.De�nition 40 from [Kamareddine, et. al , 2002℄: The judgements � `f : ta are indu
tively de�ned as follows:1. (start) For all a we have: ` a : 00:For all atomi
 pfs f we have: ` f : ()0;2. (
onne
tives) Assume � ` f :(ta11 ; : : : ; tann)a, � ` g:(ub11 ; : : : ; ubmm)b,and x < y for all x 2 dom(�) and y 2 dom(�). Then� [� ` f _ g : �ta11 ; : : : ; tann ; ub11 ; : : : ; ubmm �max(a;b);and � ` :f : (ta11 ; : : : ; tann)a;3. (abstra
tion from parameters) If � ` f : (ta11 ; : : : ; tamm)a, tam+1m+1 isa predi
ative type, g 2 A [P is a parameter of f , � ` g : tam+1m+1 , andx < y for all x 2 dom(�), then�0 ` h : (ta11 ; : : : ; tam+1m+1)max(a;am+1+1):Here, h is a pf obtained by repla
ing all parameters g0 of f whi
hare ��-equal to g by y. Moreover, �0 is the subset of the
ontext�[fy : tam+1m+1 g su
h that dom(�0)
ontains all and only those variableso

urring in h;4. (abstra
tion from pfs) If (ta11 ; : : : ; tamm)a is a predi
ative type, � `f : (ta11 ; : : : ; tamm)a, x < z for all x 2 dom(�), and y1 < � � � < yn arethe free variables of f , then�0 ` z(y1; : : : ; yn) : (ta11 ; : : : ; tamm ; (ta11 ; : : : ; tamm)a)a+1;

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 29where �0 is the subset of � [fz:(ta11 ; : : : ; tamm)ag su
h that dom(�0) =fy1; : : : ; yn; zg;5. (weakening) If �, � are
ontexts, � � �, and � ` f : ta, then also� ` f : ta;6. (substitution) If y is the ith free variable in f (a

ording to the orderon variables), and � [fy : taii g ` f : (ta11 ; : : : ; tann)a, and � ` k : taiithen �0 ` f [y:=k℄ : (ta11 ; : : : ; tai�1i�1 ; tai+1i+1 ; : : : ; tann)b:Here, b = 1 +max(a1; : : : ; ai�1; ai+1; : : : ; an;
),and
 = maxfj j 8x:tj o

urs in f [y:=k℄g(if n = 1 and fj j 8x:tj o

urs in f [y:=k℄g = ? then take b = 0) andon
e more, �0 is the subset of �[fy : taii g su
h that dom(�0)
ontainsall and only those variables o

urring in f [y:=k℄;7. (permutation) If y is the ith free variable in f (a

ording to theorder on variables), and � [fy:taii g ` f : (ta11 ; : : : ; tann)a, and x < y0for all x 2 dom(�), then�0 ` f [y:=y0℄ : (ta11 ; : : : ; tai�1i�1 ; tai+1i+1 ; : : : ; tann ; taii)a:�0 is the subset of � [fy:taii ; y0:taii g su
h that dom�0
ontains all andonly those variables o

urring in f [y:=y0℄;8. (quanti�
ation) If y is the ith free variable in f (a

ording to theorder on variables), and � [fy:taii g ` f : (ta11 ; : : : ; tann)a, then� ` 8y:taii [f ℄ : (ta11 ; : : : ; tai�1i�1 ; tai+1i+1 ; : : : ; tann)a:There is a major notational di�eren
e between the propositional fun
tionnotation of [Kamareddine, et. al , 2002℄ and our own (whi
h
an be seen inthe de�nition of type judgments just above). The authors of [Kamareddine,et. al , 2002℄ atta
h type labels to quanti�ed variables. This is
ertainly notin the spirit of PM , where there is no notation for types at all. It wouldbe possible to modify their system to make this unne
essary, but it wouldthen be ne
essary to in
lude type hypotheses for quanti�ed variables in theenvironment.The authors of [Kamareddine, et. al , 2002℄ are for
ed by the stru
tureof their system into adopting a mu
h more
ompli
ated de�nition of sub-stitution (by \substitution", we mean \substitution into propositional (orpf) notations" throughout this paragraph; substitution into type notationsis used in the de�nition of our system of type judgments, but involves nologi
al diÆ
ulties). The diÆ
ulty is that some of the rules of their system oftype judgments are de�ned in terms of the notion of substitution (as
an be

30 M. RANDALL HOLMESseen above), so substitution has to be de�ned prior to the adoption of thetype system. As a result, a
ompli
ated detour through lambda-
al
ulusis required to de�ne the notion of substitution su

essfully, whereas in ourdevelopment we are able to
orre
t the natural de�nition of substitution byappealing to the (simple) theory of types, be
ause we make no use of sub-stitution in our de�nition of type judgments. On
e we have de�ned types,we are able to use the natural de�nition of substitution, with the additionalstipulation that all terms involved have to be well-typed and substitutionsfor variables have to re
e
t the inferred types of the variables.Polymorphism is represented di�erently in the two systems. In the systemof [Kamareddine, et. al , 2002℄, there are no polymorphi
 type judgements,but a term may be assigned di�erent types in di�erent
ontexts. In oursystem, a single (but possibly polymorphi
) type is always assigned to aterm, whose stru
ture is general enough to indi
ate all possible types forthe term. The side
onditions on polymorphi
 orders generated by the
omplete algorithm for RTT
ompli
ate this pi
ture somewhat.The range of terms re
ognized as well-typed by our system is far largerthan that re
ognized by the system of [Kamareddine, et. al , 2002℄, andapparently larger than that re
ognized by PM !. The system of [Kamared-dine, et. al , 2002℄ only supports types all of whose
omponent types arepredi
ative. Probably the modi�
ations of the system required to lift thisrestri
tion would not be extensive. On reading [Kamareddine, et. al , 2002℄originally, we thought this was a weakness of their development, but in fa
tit seems to re
e
t the intentions of the authors of PM : see p. 165 of [Russelland Whitehead, 1967℄, where they assert that all non-predi
ative proposi-tional fun
tions are to be formed from predi
ative ones by generalization,and that no bound variables of non-predi
ative type are needed. However,there is a problem with this (also apparently re
ognized by the authors ofPM in an immediately following remark on p. 165): without variables ofpossibly non-predi
ative type, one
annot express the axiom of redu
ibilityin a typable form. PM makes a spe
ial provision for this by introdu
ingappli
ation of fun
tion variables without assigned order on p. 165; we sup-pose that terms with su
h variables in them would not de�ne propositionalfun
tions for PM if it was desired not to have types with impredi
ative
omponents. The system of PM
an
onveniently restri
t impredi
ativityto the top level of types as they do (while apparently forbidding quanti�
a-tion over impredi
ative types) be
ause the axiom of redu
ibility allows oneto asso
iate with ea
h element of an impredi
ative type with predi
ative
omponents a
oextensional element of the predi
ative type with the same
omponents, and one
an quantify over this type; in the absen
e of theaxiom of redu
ibility, one would need to be able to quantify over impred-i
ative types dire
tly in order to be able to say anything about them, andthis would mean that one
ould de�ne propositional fun
tions with more
omplex types.

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 31The system of [Kamareddine, et. al , 2002℄ is more modern in appearan
ethan ours; we do re
ognize this as an advantage of that system. Our programof using propositional notations themselves as environments has at leastone strange e�e
t to go along with its advantages. In the simple theory oftypes, it is reasonable to avoid assigning types to bound variables (that is,to de�ne the type algorithm in su
h a way as to e�e
tively rename boundvariables as they are en
ountered, so that a bound variable may have thesame shape as a free variable or di�erently bound variable of a di�erent typeelsewhere without
ausing a type
on
i
t). However, without a
onventionalenvironment the only way to asso
iate a polymorphi
 type with a variableseems to be to name the polymorphi
 type after the variable to whi
h it isassigned. This makes it impra
ti
al to attempt to rename variables boundin arguments of propositional fun
tions, whi
h has odd e�e
ts on typingin the simple theory of types whi
h will be seen in the examples. In therami�ed theory, it seems to be best to type all variables whi
h appear, freeor bound (even in [Kamareddine, et. al , 2002℄, the authors remark that itis ne
essary to assign types to some bound variables).We believe that our system is better in
ertain ways than the system of[Kamareddine, et. al , 2002℄. The fa
t that our notation for propositionalfun
tions does not require type indi
es is truer to the original system of PM .The fa
t that the de�nition of our type inferen
e system does not dependon the notion of substitution allows the de�nition of substitution to besimpler and more natural in our formalization. We believe that our systemlends itself better to me
hani
al implementation, but this is perhaps unfairsin
e the system des
ribed here was reverse-engineered from a me
hani
alimplementation (though it should be noted that the formal system wasreverse-engineered from an early version of the program whi
h didn't workvery well, and improvements in the formalization then drove improvementsin the program). It would be interesting to see whether and how well thesystem of [Kamareddine, et. al , 2002℄ lends itself to automation. Thesystem of [Kamareddine, et. al , 2002℄ handles bound variables in a waya little more in a

ord with modern tastes than ours does. The system of[Kamareddine, et. al , 2002℄ is more faithful to PM in limiting types to thosewith predi
ative
omponents, but we feel that any serious attempt to workin RTT without redu
ibility would require the lifting of this restri
tion.The simple theory of types is of
ourse very similar to quite standard typesystems ex
ept for its la
k of head binders in fun
tion notation, and thetype inferen
e algorithm for this system is re
ognizably of a standard kind,ex
ept for the adaptations to the head-binder-free notation for fun
tions.The rami�ed theory of types is very e

entri
 as a type system, and the
omplete algorithm we exhibit for it is unusual in its need to reason aboutarithmeti
 in order to manage order uni�
ation. From the standpoint ofmodern theories of types, the orders of RTT are pe
uliar union types, inwhi
h quite heterogeneous kinds of obje
t are
onglomerated together.

32 M. RANDALL HOLMES8 EXAMPLESTrue to the histori
al origins of this paper, we will begin by presenting someexamples from [Kamareddine, et. al , 2002℄. Some features of the output ofour software are suppressed.We are running the RTT
he
ker, but in many
ases this will not be ob-vious, as our system does not display order supers
ripts on types unless theorder is more than one greater than the maximum order of the
omponenttypes.8.1 Example 1Term input:S2(a1,a2)final type list:un
onditional type:()Just as in example 49,
lause 1, of [Kamareddine, et. al , 2002℄, the propo-sitional notation S(a1; a2) (the
omputer requires a suÆx on the predi
ateindi
ating its arity) is re
ognized as a proposition (a pf of type ()). Thesystem of [Kamareddine, et. al , 2002℄ re
ognizes this be
ause the pf is anatomi
 proposition; ours does be
ause the pf
ontains no free variables.8.2 Example 2Term input:(R1(x1) v S1(x1))final type list:x1: 0un
onditional type:(0)This is parallel to the se
ond example in
lause 2 in example 49; our usageof suÆxes on predi
ates to indi
ate arity forbade reprodu
ing the proposi-tional notation R1(x1) _ R2(x1) of the original: in this and the followingexample, our S1
orresponds to the R2 of [Kamareddine, et. al , 2002℄.Here is the analysis of this example from [Kamareddine, et. al , 2002℄.The rule numbers refer ba
k to de�nition 40 of [Kamareddine, et. al , 2002℄,whi
h is reprodu
ed in the previous se
tion of this paper.` R1(a1) : () ` R2(a1) : ()` R1(a1) _ R2(a1) : () rule 2

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 33but not : x1 : 0 ` R1(x1) : (0) x1 : 0 ` R2(x1) : (0)x1 : 0 ` R1(x1) _ R2(x1) : (0; 0) rule 2(x1 6< x1 be
ause < is stri
t). To obtain R1(x1) _ R2(x1) we must make adi�erent start:` R1(a1) : () ` R2(a1) : ()` R1(a1) _ R2(a1) : () rule 2 ` a1 : 0x1 : 0 ` R1(x1) _ R2(x1) : (0) rule 3;8.3 Example 3We look at a slightly di�erent pf for our next example.Term input:(R1(x1) v S1(x2))final type list:x1: 0x2: 0un
onditional type:(0,0)Our
he
ker analyzes this by observing that the pf
ontains two freevariables whi
h are arguments of elementary predi
ates, so must have type0, so the pf is a fun
tion of two individual arguments, i.e., has type (0; 0).This is very similar to our
he
ker's approa
h to the previous example.The analysis of a term with parallel stru
ture in the system of [Kamared-dine, et. al , 2002℄ is not so similar to the analysis of the previous exampleas is the
ase for our system. We set up this type derivation in the style of[Kamareddine, et. al , 2002℄:` R1(a1) : () ` a1 : 0x1 : 0 ` R1(x1) : (0) rule 3 ` R2(a1) : () ` a1 : 0x2 : 0 ` R2(x2) : (0) rule 3x1 : 0; x2 : 0 ` R1(x1) _ R2(x2) : (0; 0) rule 2The appli
ation of rule 2 here is
orre
t be
ause x1 < x2.In the system of [Kamareddine, et. al , 2002℄, the term R1(x1)_R2(x1) istyped by �rst
onsidering the typing of R1(a1) _ R2(a1), whi
h is immedi-ately seen to have type (), and in whi
h the term a1 has type 0, then usingthe rule for typing substitutions to insert a new
omponent with type 0 intothe type () of R1(a1)_R2(a1) (the new
omponent
orrelates with the newvariable whi
h repla
es a1) to obtain the type (0). The term R1(x1)_R2(x2)is typed by observing that the two disjun
ts have the property that all vari-ables of the �rst are alphabeti
ally prior to the variables of the se
ond,

34 M. RANDALL HOLMEStyping the �rst and the se
ond as (0) in the same way we typed the pre-vious term, then
on
luding that the type of the whole is the \produ
t"(0; 0) of two
opies of (0) (speaking somewhat loosely). The
omparisonof approa
hs to these two examples should make
lear the quite di�erent
avors of the two approa
hes.8.4 Example 4Term input:(x2(a1) v S1(a1))final type list:x2: (0)^max(|x2|,1)un
onditional type:((0)^max(|x2|,1))This is the �rst example given in example 49 in [Kamareddine, et. al ,2002℄. Our system tells us that the fun
tion x2 (
alled z in the original)
an have a type of any order with sole
omponent 0: the order jx2j of thistype will be at least 1, whi
h is expressed by writing it as the maximum of1 and jx2j (this is an order with a bounding variable).8.5 Example 5Term input:[x1℄(x1() v ~x1())final type list:x1: ()^max(|x1|,0)un
onditional type:()^max(|x1|+1,1)This is example 51 from [Kamareddine, et. al , 2002℄. Order is importantin this example. Note that the variable x1 represents a proposition (a 0-arypropositional fun
tion); the order of its type is 0. The entire term is also aproposition (it
ontains no free variables, be
ause x1 is bound by the quan-ti�er) but its order is at least 1, be
ause it must be greater than the orderof the quanti�ed variable. As in the previous example, there is no upperbound on the possible order of the type here. This
an be
hanged, though,using the \predi
ativity" quali�er of propositional fun
tion appli
ation:Term input:[x1℄(x1!() v ~x1!())final type list:x1: ()un
onditional type:

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 35()^1Now we know that the order of x1 is 0 (sin
e it is the smallest possibleorder it is not displayed) and the order of the type of the whole term is seento be exa
tly 1.8.6 Example 6We have yet to see an expli
it polymorphi
 type. This
an be remedied by
onsidering the term in Remark 58 of [Kamareddine, et. al , 2002℄.Term input:x2(x1)final type list:x1: [x1℄x2: ([x1℄)^max(|x1|+1,|x2|,1)un
onditional type:([x1℄,([x1℄)^max(|x1|+1,|x2|,1))In this term, x1 is of a
ompletely unknown type [x1℄, while x2 is seen tobe of type ([x1℄) (it is a predi
ate of obje
ts of type [x1℄), so the whole termis of type ([x1℄; ([x1℄)), in whi
h the order of the
omponents is determinedby the fa
t that x1 is alphabeti
ally prior to x2. The order index on thetype ([x1℄) of x2 appears be
ause we have no order restri
tion on x2. Weget a prettier display if we
hange to predi
ative appli
ation:Term input:x2!(x1)final type list:x1: [x1℄x2: ([x1℄)un
onditional type:([x1℄,([x1℄))In [Kamareddine, et. al , 2002℄, this is also an example of polymorphism(the pf is written z(x) instead of our x2(x1)): two di�erent derivations aregiven, ea
h yielding a di�erent type,` R(a1) : () ` a1 : 0x : 0 ` R(x) : (0) rule 3x : 0; z : (0) ` z(x) : (0; (0)) rule 4versus ` R(a1) : ()x : () ` x() : (()) rule 4x : (); z : (()) ` z(x) : ((); (())) rule 4;

36 M. RANDALL HOLMESwhereas in our system we get a single
omputation showing us what alltypes look like.If we supply more information in the
ontext (the
ontext
an only bemanipulated in our system by embedding the term to be typed in a largerterm), the polymorphi
 type will be
ome more spe
i�
:Term input:(x2!(x1) v S1(x1))final type list:x1: 0x2: (0)un
onditional type:(0,(0))Here we know from additional lo
al information in the term that thetype of x1 is 0, so we get a more spe
i�
 type for the whole propositionalfun
tion.8.7 Example 7Here we give more
omplete output for a larger example term. The examplepropositional fun
tion is adapted from the de�nition of a real number as aDedekind
ut in example 71 in [Kamareddine, et. al , 2002℄. Predi
ativepropositional fun
tion appli
ation has been used throughout to simplify thedisplay.Term input:((([Ex2℄x1!(x2) and [Ex2℄~x1!(x2))and [x2℄[x3℄(x1!(x3) implies (L2(x3,x2) implies x1!(x2))))and [x2℄(x1!(x2) implies [Ex3℄(x1!(x3) and L2(x2,x3))))basi
 list:x1: ([x2℄)x1: [x1℄x1: ([x3℄)x2: [x2℄x2: 0x3: 0x3: [x3℄unifi
ation list:x~2: [x~1℄x~2: ([x2℄)x~2: ([x3℄)x~1: ([x3℄)x~1: ([x2℄)x~1: [x~2℄

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 37x1: ([x3℄)x1: ([x2℄)x1: [x1℄x2: 0x2: [x2℄x2: [x3℄x3: [x3℄x3: [x2℄x3: 0final type list:x~2: (0)x~1: (0)x1: (0)x2: 0x3: 0un
onditional type:((0))The additional displays shown here (suppressed in previous examples)give some hint at the internal pro
esses of the type algorithm. The \basi
list"
ontains the lo
al information about types of variables. The \uni�-
ation list"
ontains information derived by unifying types pairwise. The�nal list is obtained by the pro
ess of eliminating super
uous type vari-ables by global substitutions. The additional variables x�1 and x�2 areused as \pla
eholders" internally by the algorithm (the software representstype equality judgments \t = u in P" as pairs of type judgemnts \xk hastype t in P" and \xk has type u in P" where xk has a fresh (and negative)index). The type obtained is the same as the type ((00)1)2)
laimed for thispropositional fun
tion in [Kamareddine, et. al , 2002℄: re
all that minimalorder indi
es are not displayed.8.8 Example 8We give examples of the
urious type phenomena whi
h
an result fromidenti�
ations of variables with bound variables in propositional fun
tionarguments whi
h happen to be used in the names of polymorphi
 types.- test "x1(x3(x2))";final type list:x1: (([x2℄,([x2℄)))((([x2℄,([x2℄))))

38 M. RANDALL HOLMESThe format is di�erent be
ause we are here using the STT type algo-rithm. The �nal line is the type of the term. x1(x3(x2))
ontains one freevariable x1, whi
h is a fun
tion taking one argument of the type of x3(x2);x3(x2) is itself a fun
tion of two arguments, x2, whose type is [x2℄ (ambigu-ous) and x3, whose type is ([x2℄), sin
e it takes one argument of type [x2℄.The type of x3(x2) is thus ([x2℄; ([x2℄)) (re
all that arguments are suppliedto a propositional fun
tion in alphabeti
al order of the free variables repre-senting them), the type of x1 is (([x2℄; ([x2℄)))and the type of x1(x3(x2)) is((([x2℄; ([x2℄)))).The term x1(x2(x1)) apparently has exa
tly the same meaning, sin
ex2(x1) is the same obje
t as x3(x2), but the result of typing this term isquite di�erent.- test "x1(x2(x1))";basi
 list:x1: (([x1℄,([x1℄)))unifi
ation list:x1: (([x1℄,([x1℄)))final type list:x1: !?!!?!This fails to type. The diÆ
ulty is that the types of the two o

urren
esof x1 are for
ed to be the same, and this results in
ir
ularity.In other
ases this is harmless in our implementation of STT :- test "x1(x1(x2))";final type list:x1: ((([x2℄),[x2℄))(((([x2℄),[x2℄)))There is no problem here be
ause, although the types of the two o
-
urren
es of x1 are in
ompatible, all information about the type of x1 isdis
arded when the typing of the argument x1(x2) is �nished, sin
e it is notused in the polymorphi
 type of this term. But the RTT algorithm will nota

ept this:Term input:x1!(x1!(x2))basi
 list:x1: ((([x2℄),[x2℄))

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 39x1: [x1℄x1: ([x2℄)x2: [x2℄unifi
ation list:x~2: [x~1℄x~2: ([x2℄)x~2: ((([x2℄),[x2℄))x~1: ((([x2℄),[x2℄))x~1: ([x2℄)x~1: [x~2℄x1: ((([x2℄),[x2℄))x1: ([x2℄)x1: [x1℄x2: (([x2℄),[x2℄)x2: [x2℄final type list:x~2: ?!?x~1: ?!?x1: ?!?x2: ?!?un
onditional type:?!?Attempting to type standard form:x1!(x2!(x3))
onditional type:(((([x3℄),[x3℄)))Here type information from the propositional fun
tion argument is pre-served, and it is noti
ed that x1 needs to be assigned type (x2) and type((([x2℄); [x2℄)), whi
h are in
ompatible. However, this is not quite the end ofthe matter: we used a variant of the RTT
he
ker whi
h attempts to re
overfrom type failure by renaming bound variables, and the �-equivalent termx1!(x2!(x3)) is a
tually typable (the
he
ker is less verbose on the se
ond
he
k; one
an rerun the
he
ker on the term with renamed variables to getmore detailed information).8.9 Example 9We now give an example of the appli
ation of the
omplete type algorithmfor RTT .Term input:(x1(x2,x2) v x1([x3℄x3(x4),[x5℄[x7℄x7(x5,x6)))un
onditional type:

40 M. RANDALL HOLMES?!?
onditional type:((([x6℄)^max(|x3|+1,|x6|+2,2),([x6℄)^max(|x5|+2,|x6|+2,|x7|+1,2))^max(|x1|,|x3|+2,|x5|+3,|x6|+3,|x7|+2,3),([x6℄)^max(|x3|+1,|x6|+2,2))WITH|x3| <= |x7| and|x5|+1 <= |x7| and|x6|+1 <= |x7| and|x7|+2 <= |x1| and|x7| <= |x3|The
omplete
he
ker tells us that this propositional fun
tion does nottype under the provisional algorithm (under the heading \un
onditionaltype"), then gives a type and a set of
onditions on polymorphi
 ordersunder whi
h this propositional fun
tion is well-typed in RTT .8.10 Example 10Here is another example in whi
h there are two di�erent
onditions underwhi
h the given propositional fun
tion is well-typed.Term input:(x1!(x2,x2) v x1!([x3℄[x5℄x3!(x5,x8),[x6℄[x9℄x6!(x4,x9)))un
onditional type:?!?
onditional type:((([x8℄)^max(|x5|+2,|x8|+2,2),([x8℄)^max(|x8|+2,|x9|+2,2)),([x8℄)^max(|x5|+2,|x8|+2,2))WITH|x5| <= |x9| and|x8| <= |x9| and|x9| <= |x5|OR|x5| <= |x8| and|x9| <= |x8|We will attempt to talk our way through the typing of the se
ond exam-ple. In more standard notation, the propositional fun
tion isx1!(x2; x2) _ x1!((8x3:(8x5:x3(x5; x8))); (8x6:(8x9:(x6!(x4; x9)))))The entire term is a propositional fun
tion of the arguments x1 and x2;it is ne
essary to �gure out what the types of x1 and x2 are. Be
ause of the

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 41presen
e of the subterm x1!(x2; x2), we know that the two arguments of anyo

urren
e of x1 must be of the same type. So the propositional fun
tions(8x3:(8x5:x3(x5; x8))) and (8x6:(8x9:(x6!(x4; x9))) are of the same type.Ea
h of these is a fun
tion of one variable, x8 in one
ase and x4 in theother, so x4 and x8 are of the same type. This base type is polymorphi
:we know nothing about it.Now we need to analyze orders. The type of (8x3:(8x5:x3(x5; x8))) hasorder two greater than the maximum of the orders of [x5℄ and [x8℄. Thein
rement of two is be
ause x3 has type one greater than this maximum,and the order is raised one more be
ause of the quanti�er over the type ofx3. Similarly, the order of the type of (8x6:(8x9:(x6!(x4; x9))) is two greaterthan the maximum of the order of [x4℄ = [x8℄ and the order of [x9℄. Thesetwo orders have to be the same. There are two ways for this to happen:either the order of [x5℄ is greater than the order of [x8℄, in whi
h
ase theorder of [x9℄ also has to be greater than the order of [x8℄ and a
tually mustbe the same as the order of [x5℄, or the order of [x8℄ is greater than or equalto the orders of [x5℄ and [x9℄ (whi
h in this
ase need not be the same).And these two
ases are what the output above des
ribes.The type of x1 will be ([x2℄; [x2℄); the type of x2 will be (x8). So theunderlying simple type of this expression is ((([x8℄); ([x8℄)); ([x8℄)), and thisis what we see above, adorned with appropriate orders.9 APPLICATIONS TO PROOF CHECKINGWe brie
y dis
uss the appli
ation of the typing software in the developmentof a proof
he
ker for the system of PM , as expressed in our version of thenotation of [Kamareddine, et. al , 2002℄.Details of the proof
he
ker itself are not espe
ially relevant at this point(we are attempting to follow the rules of inferen
e in PM
losely). Butthere are a
ouple of observations worth making.One never has any o

asion to see a type index in the
ourse of using theproof
he
ker. This is appropriate, sin
e PM does not even have notationfor types, so we never see su
h notation in PM 's theorems or proofs.The type
he
ker is used ubiquitously as part of the pro
ess of
he
kingwell-formedness of propositions and propositional fun
tions. This is natural.There is one pla
e in the logi
 where the type
he
ker plays an importantand perhaps not entirely obvious role. This is in the implementation of therule of modus ponens . When one dedu
es a proposition Q from premises Pand P ! Q, there is a subtle falla
y whi
h
an o

ur, and whi
h use of thetype
he
ker enables one to avoid.All propositions of PM (and so all theorems of the nas
ent proof
he
ker)are to be understood in the most general possible way: they are to be truefor all possible values of their free variables under all possible assignments

42 M. RANDALL HOLMESof type. The diÆ
ulty is that the form of the proposition P ! Q may givemore type information than Q (and also more than P , but this is harmless).So if the modus ponens rule were implemented in a naive way, it might bepossible to dedu
e a proposition Q whi
h is true for all type assignments toQ whi
h render P ! Q well-typed, but not for some other type assignmentsfor Q. So the proof
he
ker needs to
he
k that the type
he
king of P ! Qgives the same type information about Q that the type-
he
king of Q alonegives.We make the following
onje
tures, whi
h we plan to dis
uss in a laterpaper where we will have more to say about the proof
he
ker.If types
onstru
ted from the type of propositions are admitted, theuse of the naive form of modus ponens will lead to paradox. The rea-son for this is that under reasonable assumptions the type of propositions,for example, has only two elements, so one
ould prove an assertion like(9ab:8x:x = a _ x = b) using hypotheses from whi
h one
ould infer that xwas a proposition, but produ
e the
on
lusion in systemati
ally ambiguousform. This
on
lusion leads to
ontradi
tion be
ause one
an prove thatsome other types (also
onstru
tible from the type of propositions) havemore than two elements: for example, ((); ()) has four elements.On the other hand, if types
onstru
ted from the type of propositions arenot permitted (()
an o

ur only as the type of a proposition, not as thetype of a propositional fun
tion) then we believe that use of the naive rule ofmodus ponens does not lead to
ontradi
tion, though it leads to unexpe
tedresults, su
h as the ability to prove the \axiom of in�nity" in pure logi
. Thereason for this has to do with the relationship between the rami�ed theory oftypes and the set theory NFP de�ned by Mar
el Crabb�e in [Crabb�e, 1982℄,whi
h is the predi
ative version of Quine's \New Foundations". I haveshown elsewhere (in [Holmes, 1999℄) that NFP is mutually interpretablewith the rami�ed theory of types with the axiom of in�nity. Though thereare some details to
he
k, we believe that it is possible to
onstru
t a modelof the rami�ed theory of types, using its relationship with NFP , in su
h away that all the types are isomorphi
 in a suitable sense, so that if Q isa theorem for any assignment of types to its variables, it is a theorem forall assignments of types to its variables, whi
h is a suÆ
ient
ondition forthe naive rule of modus ponens to be valid. If the type of propositions ispermitted as a
omponent, then it is possible to
onstru
t types of distin
t�nite
ardinalities, whi
h
annot be isomorphi
 with one another, so it isne
essary to forbid the use of the type of propositions as a
omponent typeif one wishes to exploit this (presumed) result.

POLYMORPHIC TYPE-CHECKING FOR PRINCIPIA MATHEMATICA 43ACKNOWLEDGEMENTSWe appe
iate useful
onversations with Professor Kamareddine (and a

essto the LaTeX sour
e of [Kamareddine, et. al , 2002℄ to fa
ilitate typesettingof the examples taken or adapted from that paper), and also the helpfulremarks of anonymous referees.BIBLIOGRAPHY[Crabb�e, 1982℄ Crabb�e, M. \On the
onsisten
y of an impredi
ative subsystem of Quine'sNF". Journal of Symboli
 Logi
 47 (1982), pp. 131-136.[Holmes, 1999℄ Holmes, M. Randall, \Subsystems of Quine's \New Foundations" withPredi
ativity Restri
tions", Notre Dame Journal of Formal Logi
, vol. 40, no. 2(spring 1999), pp. 183-196.[Holmes, 2003℄ Holmes, M. Randall, software �les (in standard ML) rtt.sml (sour
efor the type
he
ker) and rttdemo.sml (demonstration �le), a

essible athttp://math.boisestate.edu/�holmes/holmes/rtt
over.html.[Kamareddine, et. al , 2002℄ Kamareddine, F., Nederpelt, T., and Laan, R., \Types inmathemati
s and logi
 before 1940", Bulletin of Symboli
 Logi
, vol. 8, no. 2, June2002.[Milner, 1978℄ Milner, R., \A theory of type polymorphism in programming", J. Comp.Sys. S
i., 17 (1978), pp. 348-375.[Peressini, 1997℄ Peressini, Anthony F., \Cumulative versus non
umulative rami�edtypes", Notre Dame Journal of Formal Logi
, vol. 38, no. 3, summer 1997.[Russell and Whitehead, 1967℄ Whitehead, Alfred N. and Russell, Bertrand, Prin
ipiaMathemati
a (to *56), Cambridge University Press, 1967.

