- s "(?a=?b)||((?c=?b)||(?a+?b),?x),?y";
- right();left();right();left();left(); (* navigate
to term ?a *)
(?a = ?b) || ((?c = ?b) || ({?a} + ?b) , ?x) , ?y
?a (* the display *)
- lookhyps(); (* view locally relevant hypotheses *)
(* hypotheses displayed *)
1 (positive):
?a =
?b
2 (positive):
?c =
?b
(* end of hypothesis display *)
- ri "0|-|1"; ex();
(?a = ?b) || ((?c = ?b) || ({?b} + ?b) , ?x) , ?y
?b (* the display *)
- rri "0|-|2"; ex(); (* apply second hypothesis
in converse sense *)
(?a = ?b) || ((?c = ?b) || ({?c} + ?b) , ?x) , ?y
?c (* the display *)
- rri "1|-|1"; ex(); (* introduce new case expression
with first hypothesis *)
(?a = ?b) || ((?c = ?b) || ({(?a = ?b) || ?c , ?x_3}
+ ?b) , ?x) , ?y (* the display *)
(?a = ?b) || ?c , ?x_3
- ri "1|-|1"; ex();
(?a = ?b) || ((?c = ?b) || ({?c} + ?b) , ?x) , ?y
?c (* the display *)
- up(); up(); right();
(?a = ?b) || ((?c = ?b) || (?c + ?b) , {?x}) , ?y
?x (* the display *)
- lookhyps();
(* hypotheses displayed *)
1 (positive): (* note change of sense of
second hypothesis *)
?a =
?b
2 (negative):
?c =
?b
(* end of hypothesis display *)
- rri "(2|-|2)@0"; ex(); (* introduce new case
expression stipulating the value
to go in the new branch *)
(?a = ?b) || ((?c = ?b) || (?c + ?b) , {(?c = ?b)
|| 0 , ?x}) , ?y
(?c = ?b) || 0 , ?x
(* sample definitions of propositional connectives *)
- defineinfix "NOT" "~?x" "?x||false,true";
NOT:
~ ?x =
?x || false , true
NOT , 0
- defineinfix "AND" "?x&?y"
"?x||(?y||true,false),false";
AND:
?x & ?y =
?x || (?y || true , false) , false
AND , 0