- s "(?a=?b)||((?c=?b)||(?a+?b),?x),?y"; - right();left();right();left();left(); (* navigate to term ?a *) (?a = ?b) || ((?c = ?b) || ({?a} + ?b) , ?x) , ?y ?a (* the display *) - lookhyps(); (* view locally relevant hypotheses *) (* hypotheses displayed *) 1 (positive): ?a = ?b 2 (positive): ?c = ?b (* end of hypothesis display *) - ri "0|-|1"; ex(); (?a = ?b) || ((?c = ?b) || ({?b} + ?b) , ?x) , ?y ?b (* the display *) - rri "0|-|2"; ex(); (* apply second hypothesis in converse sense *) (?a = ?b) || ((?c = ?b) || ({?c} + ?b) , ?x) , ?y ?c (* the display *) - rri "1|-|1"; ex(); (* introduce new case expression with first hypothesis *) (?a = ?b) || ((?c = ?b) || ({(?a = ?b) || ?c , ?x_3} + ?b) , ?x) , ?y (* the display *) (?a = ?b) || ?c , ?x_3 - ri "1|-|1"; ex(); (?a = ?b) || ((?c = ?b) || ({?c} + ?b) , ?x) , ?y ?c (* the display *) - up(); up(); right(); (?a = ?b) || ((?c = ?b) || (?c + ?b) , {?x}) , ?y ?x (* the display *) - lookhyps(); (* hypotheses displayed *) 1 (positive): (* note change of sense of second hypothesis *) ?a = ?b 2 (negative): ?c = ?b (* end of hypothesis display *) - rri "(2|-|2)@0"; ex(); (* introduce new case expression stipulating the value to go in the new branch *) (?a = ?b) || ((?c = ?b) || (?c + ?b) , {(?c = ?b) || 0 , ?x}) , ?y (?c = ?b) || 0 , ?x (* sample definitions of propositional connectives *) - defineinfix "NOT" "~?x" "?x||false,true"; NOT: ~ ?x = ?x || false , true NOT , 0 - defineinfix "AND" "?x&?y" "?x||(?y||true,false),false"; AND: ?x & ?y = ?x || (?y || true , false) , false AND , 0