
The Mark2 Theorem Prover*

M. Randall Holmes

June 8, 2020

Contents

1 Introduction 2

2 The Algebraic Layer and the Tactic Language 2
2.1 The Term Language of Mark2 . 3
2.2 Substitution and Rewriting . 4
2.3 The Basic Session Model . 5
2.4 The Tactic Language . 6
2.5 An Example Session . 7
2.6 Refinements of the Tactic Language 13
2.7 An Extended Example: Combinatory Logic 17
2.8 Arithmetic and “Functional Programming”; Technical Rewriting

Issues . 25
2.9 Theorem Export and Theorem Search 27

2.9.1 Theorem Export . 27
2.9.2 Theorem Search . 28

3 The Conditional Layer 28
3.1 Examples of Conditional Layer Functions 31

4 The Abstraction Layer 38
4.1 Definition . 38
4.2 Stratified λ-Calculus . 40
4.3 Examples of Abstraction Layer Functions 43
4.4 Quantification, Types and Retractions 48

4.4.1 Examples of Extension of Stratification 51
4.5 Synthetic Abstraction . 59

4.5.1 Examples of Synthetic Abstraction 68

5 Relations to Other Work 74

*supported by ARO grant DAAH04-94-0247

1

6 Implementation Issues 75
6.1 Implementation of the Prover . 75
6.2 Implementation of Mathematical Theories 76

7 Progress Made Under This Grant 76

8 Appendix on Personnel 77

9 Appendix on Dissemination of Results 78

1 Introduction

This paper will describe Mark2, a general-purpose system for computer aided
reasoning developed by the author. In its current version, it is the final progress
report for ARO grant DAAH04-94-0247. The support of the Army Research
Office is appreciated.

The current version of the prover documentation is attached as an appendix.
The prover source code and a collection of proof scripts can be obtained from
our Web page, http://math.idbsu.edu/∼holmes (follow the link to Mark2).

The prover implements a higher order logic somewhat stronger than the
usual simple theory of types. This logic is implemented in three layers.

The first layer is devoted to equational or algebraic reasoning: all Mark2
theories are equational in the sense that their theorems are equations and are
used as rewrite rules. The tactic language of Mark2 is based on a device for
expressing recursively chained rewrite rules as theorems within a Mark2 theory;
the basic ideas of the tactic language live in the first layer, though it acquires
refinements as we consider the second and third layers.

The second layer is devoted to reasoning about expressions defined by cases.
This layer of the logic implements propositional logic and the logic of identity.

The third layer is devoted to abstraction. Quantification and a strong higher
order logic are implemented on this level. The higher order logic used is unusual
in being (at least superficially) type-free; it is a version of Quine’s set theory
“New Foundations” (see [21], [18]).

The three layers of the logic provide an organizational principle for this
paper; each of the layers is considered in turn.

There are many examples of prover sessions in the text; they are not as a
rule realistic examples of applications, being generally very low-level in their
approach. More efficient proofs become possible when more groundwork has
been done than is possible in the scope of a surveyable example.

2 The Algebraic Layer and the Tactic Language

This section discusses the features of Mark2 which support equational reasoning
and the implementation of tactics (programs which automatically carry out
many proof steps) as “equational theorems” of a special form.

2

2.1 The Term Language of Mark2

In this section, we summarize those features of the term language of Mark2
which are relevant at the algebraic level.

Any string which contains no characters other than letters, digits or the
special characters ? and may be an atomic term of the language of Mark2.

Atomic terms of the language of Mark2 are of four kinds:

numerals: Strings of digits are recognized by Mark2 as numerals. Unlike other
atomic constants, numerals do not need to be declared. Mark2 provides
built-in operations of infinite-precision unsigned integer arithmetic as part
of the tactic language.

constants: An atomic term which contains a non-digit and does not begin with
? is a constant . Constants used in a given Mark2 theory must be declared
in that theory.

bound variables: An atomic term which consists of ? followed by a non-zero-
initial numeral is a bound variable. The function of bound variables is
discussed in the section on the “abstraction layer”.

free variables: An atomic term which begins with ? and is not a bound vari-
able is a free variable. Any free variable may be used in any theory without
declaration.

A string of special characters not including ?, or paired forms like paren-
theses, braces, and brackets is called an operator .

An operator of more than one character beginning with ∧ is an operator
variable. Operator variables can be used without declaration, though there are
situations in which it is desirable to declare operator variables as having special
features.

An operator of more than one character beginning with : is a type-raised
operator , the result of one or more applications of a certain operation to the
operator (variable or constant) obtained by stripping off the initial occurrences
of :. This operation is discussed in the section on the “abstraction layer”.

All other operators (including the one character operators : and ∧) are
operator constants. Operator constants must be declared in a theory in which
they are used; there are a number of operators which are automatically declared
by Mark2.

Complex terms of Mark2 are of three kinds:

infix terms: These consist of a term followed by an operator followed by a
term. Parentheses may be required, depending on the precedence of op-
erators involved. Parentheses may be used freely in terms to be parsed
by the prover; the prover will display only those parentheses which are
needed. Precedence of operators is set by the user; the default is for all
operators to have the same precedence and group to the right (the con-
vention of APL).

3

prefix terms: These consist of an operator followed by a term. Remarks about
parentheses are the same as in the case of infix terms. A prefix term is
always regarded by Mark2 as being an abbreviation for an infix term; an
operator cannot be used as a prefix unless a declaration has been made of
the “default left argument” to be understood as the left argument of the
infix terms of which terms with the operator as prefix are abbreviations.

bracket terms: These consist of a term enclosed in brackets. If a term contains
no bound variables, the result of enclosing it in brackets is the constant
function with the referent of the enclosed term as its constant value. The
general function of brackets is to define functions by abstraction: bracket
terms are λ-terms. DeBruijn levels (see [5] for the origin of this concept)
are used to determine variable binding: outermost bracket subterms of a
term bind ?1, all second-to-outermost bracket subterms bind ?2 and so
forth. A bound variable may not appear in a context in which it is not
bound. This will be discussed further in the section on the “abstraction
layer”.

Syntactical refinements which are expected to be added are postfix terms
and more general forms for operators (allowing alphanumeric characters to be
used in names of operators).

2.2 Substitution and Rewriting

For the moment, we restrict ourselves to the subset of the language without
bound variables. Bracketed terms are present, with [T] denoting the constant
function whose value everywhere is T. The virtue of this subset of the language
is that the definition of substitution is very simple. If T is a term, we use the
notation T[A/?x] to denote the result of replacing the free variable ?x with the
term A wherever the variable appears in T.

The set of substitution instances of a term T is the smallest set of terms
which contains T itself and contains the term U[A/?x] for each term A and free
variable ?x whenever it contains U.

A term of the form A = B is called an equation (unsurprisingly). We say that
a term T is rewritten to the term U by the equation A = B whenever the equation
T = U is a substitution instance of the equation A = B. This has one peculiar
consequence: if B happens to contain free variables which do not occur in A, then
there are many possible results of rewriting T with A = B. In practice, variables
in B which do not occur in A are rewritten to new variables (i.e., variables wich
did not occur in A).

If A = B is an equation, the equation B = A is said to be the converse of A
= B. Equations A = B and B = C are said to have composition A = C (composi-
tion can be given a somewhat more general definition, but this suffices for our
purposes).

If A = B is an equation, we define R(A = B) as the equation (?new ∧+ A) =

(?new ∧+ B), where the variable ?new and the infix variable ∧+ do not appear

4

in A or B (strictly speaking, this does not define a unique equation, but the no-
tion of rewriting with all such equations is the same). Similarly, we define L(A =

B) as (A ∧+ ?new) = (B ∧+ ?new) and V(A = B) as [A] = [B]. We refer to
R, L, and V as “localizing operations” on equations. We formalize the notion
of applying a finite sequence of localizing operations to an equation: the empty
sequence applied to an equation gives the equation itself, the application of a
one-term sequence (O1) is the same as the application of O1, while the applica-
tion of the sequence (O1, . . . , On) of localization operators Oi to an equation A

= B is the result of applying (O1, . . . , On−1) to the equation On(A = B).
A Mark2 “abstract theory” is a set of equations containing all identity equa-

tions T = T (mod considerations of declared constants and operations) and
closed under converse, composition, substitution instance, and localizing oper-
ations. It should be clear that the notion of a Mark2 abstract theory coincides
with the notion of a set of equations closed under the usual methods of proof
in equational theories (within the bounds of the details of Mark2 notation). A
“concrete theory” in Mark2 is simply a set of equations (regarded as representing
the minimal abstract theory of which it is a subset).

2.3 The Basic Session Model

The aim of a session under Mark2 is the proof of an equational theorem in
a given theory. One is given a set of theorems already postulated or proved
(a concrete theory); the aim is to demonstrate that a desired equation can be
added to the concrete theory, i.e., that it can be obtained from the sentences in
the concrete theory by a combination of the operations on equations listed in
the previous section.

Initially the user enters a term T. The user then sees the term T, but the
object actually being manipulated is the equation T = T. A sequence of trans-
formations are applied to this equation, each of which is guaranteed to preserve
the condition that the equation produced will belong to the minimal abstract
theory containing the given concrete theory. The allowed transformations are
the conversion of the equation (interchange of left and right hand sides), global
assignment of a value to a free variable (repeated application of this justifies
replacement of the equation by any substitution instance) and rewriting of the
right hand side of the equation by an element of the theory or by the result of
application of a sequence of localizing operations to an element of the theory.

At each step, the prover is manipulating an equation internally, but the user
sees things rather differently. What the user is presented with is a term, the
right hand side of the equation which the prover is considering, and a selected
subterm of that term. The choice of selected subterm encodes the sequence
of localizing operations which will be applied to any equation of the concrete
theory invoked as a rewrite rule. In other words, the selected subterm is the
specific subterm which an equation from the concrete theory may be used to
rewrite. The user may manipulate the selection of this subterm by “moving”
through the term, either to the left (an L or V, depending on the form of the
previous selected subterm is added to the sequence of these operations to be

5

applied), to the right (precisely analogous to movement to the left), up (the
sequence of localizing operations to be applied has its last element deleted, so
rewriting will be carried out on the “parent” term of the previously selected
subterm) or to the top (the list of localizing operations is emptied and rewrites
will be applied to the entire right-hand side of the equation). More sophisticated
movement commands are available, but this is the basic set. The sequence of
localizing operations is actually represented by a list of booleans (truth values),
in which true represents L, false represents R, and either truth value may
indifferently represent V.

The options available from the user’s standpoint are to interchange the left
and right hand sides of the equation (thus replacing the right-hand term with
the left-hand term as the term being viewed), make a global assignment to a
free variable (this may affect both sides of the equation being proved), navi-
gate within the term he/she sees (change the selection of the subterm to which
rewrites are to be applied), or apply equations in the concrete theory as rewrite
rules to the selected subterm of the right hand side of the equation. When the
equation has achieved the desired form, it may be added to the concrete theory;
an identifier is declared to represent the newly proved theorem.

This is a model of equational proof which is adequate in theory but of course
tedious in practice. It differs from the usual approach to proof with rewrite rules
in requiring complete control over where rules are applied (the usual approach
can be realized using the tactic language). The introduction of the metaphor
of navigation through the parse tree of the term being manipulated goes some
way toward making this sort of reasoning feasible.

2.4 The Tactic Language

One of the novel features of Mark2 is the ability to represent “tactics” (programs
for the automatic execution of many proof steps) as equational theorems, stored
in theories in the same way as conventional theorems. The term “tactic” is
borrowed from the provers of the LCF family such as Nuprl ([3]) or HOL ([8]),
but in those systems a tactic is an ML function, an object of quite a different
sort than a theorem.

Mark2 provides predeclared operators which allow one to represent in a term,
without changing its semantics, the intention of rewriting with an equation. A
term of the form thm => term has the same referent as term, but has the
additional connotation that it is intended to apply the equation in the current
theory with the name thm. It is thus required that theorems in the current
theory have names which are declared constants in the current theory. A term
thm <= term has a similar additional connotation, except that the converse of
the theorem referred to by thm is to be applied.

Special commands allow the introduction of such rewriting annotations.
When the tactic interpreter is invoked, the intentions signalled by all such
rewriting annotations are carried out. When the theorem thm cannot be used
to rewrite the term thm => term or thm <= term in the indicated sense, the
annotation is simply dropped. The tactic interpreter follows a depth-first strat-

6

egy; the term thm => term or thm <= term is not considered for rewriting until
term itself is reduced to a form free of annotations.

The power of this idea is seen when it is realized that one can prove equations
as theorems which involve rewriting annotations. Rewriting with such theorems
will introduce new rewriting annotations; the tactic interpreter carries these out
in the same way that it carries out annotations present when it is invoked.

The tactic language of Mark2 is also discussed in our [14].

2.5 An Example Session

The prover is implemented in Standard ML, and its interface is currently the
SML interface. We do not claim that this is a desirable state of affairs; a better
interface is one of our goals.

In this subsection, we will present examples of declarations setting up a small
theory, and some simple proof sessions, in order to give a concrete referent to
the discussion up to this point.

In all sessions presented in this paper, it is useful to be aware that the SML
prompt is a hyphen -; this allows one to distinguish commands given by the
user to the prover from prover responses.

We first declare an operator.

- declareinfix "+";

At this point, the prover knows nothing about this operator: we continue by
supplying some basic axioms.

- axiom "COMM" "?x+?y" "?y+?x";

COMM:

?x + ?y =

?y + ?x

["COMM"]

- axiom "ASSOC" "(?x+?y)+?z" "?x+?y+?z";

ASSOC:

(?x + ?y) + ?z =

?x + ?y + ?z

["ASSOC"]

- axiom "ZERO" "0+?x" "?x";

ZERO:

0 + ?x =

?x

["ZERO"]

7

The command and the prover’s responses are given. In connection with the
associativity axiom, it is worth recalling here that the default grouping of all
operators is to the right.

We first prove a simple theorem.

- start "?x+?y+?z";

{?x + ?y + ?z}

?x + ?y + ?z

We enter the term which will serve as the left side of the theorem to be proved.

- right();

?x + {?y + ?z}

?y + ?z

We “move” to the right subterm.

- ruleintro "COMM";

?x + {COMM => ?y + ?z}

COMM => ?y + ?z

We indicate the intention of rewriting this subterm with the commutative law.

- execute();

?x + {?z + ?y}

?z + ?y

We carry out this intention: execute is the command which invokes the tactic
interpreter.

- up();

{?x + ?z + ?y}

?x + ?z + ?y

- ruleintro "COMM"; execute();

{COMM => ?x + ?z + ?y}

COMM => ?x + ?z + ?y

8

{(?z + ?y) + ?x}

(?z + ?y) + ?x

We move back up to the top of the term and apply the commutative law.

- ruleintro "ASSOC"; execute();

{ASSOC => (?z + ?y) + ?x}

ASSOC => (?z + ?y) + ?x

{?z + ?y + ?x}

?z + ?y + ?x

We apply the associative law. This completes the proof of the intended theorem;
we now record the theorem as proved.

- prove "ROTATE";

ROTATE:

?x + ?y + ?z =

?z + ?y + ?x

["ASSOC","COMM"]

The new theorem is assigned the name ROTATE. It can be invoked in the same
way the axioms were invoked:

- start "?a+?b+?c+?d";

{?a + ?b + ?c + ?d}

?a + ?b + ?c + ?d

- ri "ROTATE"; execute();

{ROTATE => ?a + ?b + ?c + ?d}

ROTATE => ?a + ?b + ?c + ?d

{(?c + ?d) + ?b + ?a}

(?c + ?d) + ?b + ?a

- ri "ROTATE"; execute();

9

{ROTATE => (?c + ?d) + ?b + ?a}

ROTATE => (?c + ?d) + ?b + ?a

{?a + ?b + ?c + ?d}

?a + ?b + ?c + ?d

Now we show how simple tactics are developed. After this point in the paper,
we will not show displays of the selected subterm when it is at the top level.

- s "?x+0";

{?x + 0}

- ri "COMM"; execute();

{COMM => ?x + 0}

{0 + ?x}

- ri "ZERO"; execute();

{ZERO => 0 + ?x}

{?x}

- prove "COMMZERO";

COMMZERO:

?x + 0 =

?x

["COMM","ZERO"]

The theorem COMMZERO is an ordinary equational theorem, of course.

- start "?x+?y";

{?x + ?y}

- ruleintro "ZERO"; ruleintro "COMMZERO";

{ZERO => ?x + ?y}

{COMMZERO => ZERO => ?x + ?y}

10

- prove "EITHERZERO";

EITHERZERO:

?x + ?y =

COMMZERO => ZERO => ?x + ?y

["COMM","ZERO"]

The new “theorem” EITHERZERO involves rewriting annotations; it is a simple
tactic.

- start "?x+0";

{?x + 0}

- ruleintro "EITHERZERO"; execute();

{EITHERZERO => ?x + 0}

{?x}

- start "0+?x";

{0 + ?x}

- ruleintro "EITHERZERO"; execute();

{EITHERZERO => 0 + ?x}

{?x}

We see that EITHERZERO has an effect which cannot be achieved by rewriting
with a single equation; it eliminates addition of zero on the right or the left.

- declarepretheorem "ZEROES";

- start "0+?x";

{0 + ?x}

- ri "ZERO"; execute();

{ZERO => 0 + ?x}

{?x}

- ri "ZEROES";

11

{ZEROES => ?x}

- prove "ZEROES";

ZEROES:

0 + ?x =

ZEROES => ?x

["ZERO"]

The special declaration with declarepretheorem is required because the ruleintro
command checks for declarations of theorems introduced; by the nature of the
situation, ZEROES must be introduced before it has actually been proved (and
so declared). The effect of rewriting with ZEROES is more impressive than that
of rewriting with EITHERZERO:

- start "0+0+0+0+0+0+?x";

{0 + 0 + 0 + 0 + 0 + 0 + ?x}

- ri "ZEROES"; execute();

{ZEROES => 0 + 0 + 0 + 0 + 0 + 0 + ?x}

{?x}

The effect of ZEROES is to eliminate addition of zero on the left as many times
as it can.

- startover();

{0 + 0 + 0 + 0 + 0 + 0 + ?x}

- ri "ZEROES"; steps();

{ZEROES => 0 + 0 + 0 + 0 + 0 + 0 + ?x}

ZEROES => 0 + 0 + 0 + 0 + 0 + 0 + ?x

ZEROES => 0 + 0 + 0 + 0 + 0 + ?x

ZEROES => 0 + 0 + 0 + 0 + ?x

ZEROES => 0 + 0 + 0 + ?x

ZEROES => 0 + 0 + ?x

ZEROES => 0 + ?x

ZEROES => ?x

?x

We recapitulate the last proof. The steps command invokes the “tactic debug-
ger”, which traces the effect of execute step by step. Note that it is important
that the rewriting annotation with ZEROES will be dropped when it no longer

12

applies; this is why it is possible for the recursion to terminate. These examples,
while very simple, should suggest why the tactic interpreter of Mark2 supports,
in effect, a full-fledged programming language. Refinements described in the
next section increase the ease of use of this programming language.

2.6 Refinements of the Tactic Language

In this section, some refinements of the tactic language of Mark2 are discussed,
with motivating examples.

The first refinement is best illustrated by considering the tactic EITHERZERO

developed in the previous subsection. It turns out that this tactic has unex-
pected behavior in certain circumstances:

- s "0+?x+0";

{0 + ?x + 0}

- ri "EITHERZERO"; execute();

{EITHERZERO => 0 + ?x + 0}

{?x}

The difficulty here is that we may have thought of the applications of ZERO and
COMMZERO as alternatives, but there is a case where one can be applied and then
the other.

The solution is the definition of another pair of infixes for rewriting annota-
tion: the new infixes =>> and <<= signal the intention of applying an equation
as a rewrite rule if a previous attempt to rewrite has failed. In an expression
of the form thm n =>>...thm 2 =>> thm 1 => term, the tactic interpreter will
attempt to apply each of the theorems in turn, starting with thm 1; once a
theorem applies, the subsequent theorems (working outward) will be ignored.
The innermost annotation infix must be => (or <=) because there is no previous
rewrite in the sequence which might fail.

- s "?x+?y";

{?x + ?y}

- ruleintro "ZERO";

{ZERO => ?x + ?y}

- altruleintro "COMMZERO";

{COMMZERO =>> ZERO => ?x + ?y}

- prove "EITHERZERO2";

13

EITHERZERO2:

?x + ?y =

COMMZERO =>> ZERO => ?x + ?y

["COMM","ZERO"]

- s "0+?x+0";

{0 + ?x + 0}

- ri "EITHERZERO2";

{EITHERZERO2 => 0 + ?x + 0}

- execute();

{?x + 0}

Here we see more natural behavior for EITHERZERO2; it eliminates one addition
of zero on either the right or the left. This is a trivial example, of course; it
has turned out to be important in ensuring reliable behavior of more complex
tactics to be able to be certain that only one of a list of alternatives would be
applied.

The second major refinement of the tactic language allows parameters to be
supplied to tactics. The infix @ is the predeclared infix of function application; it
is also used to link parameters to tactics (parameterized tactics can be thought
of as theorem-valued functions). Multiple parameters can be linked with the
predeclared pair infix ,. Here is a simple example of a parameterized tactic:

- start "?x^+?y";

{?x ^+ ?y}

- right();

?x ^+ {?y}

?y

- ruleintro "?thm";

?x ^+ {?thm => ?y}

?thm => ?y

- prove "RIGHT@?thm";

14

RIGHT @ ?thm:

?x ^+ ?y =

?x ^+ ?thm => ?y

[]

- start "?x+?y+?z";

{?x + ?y + ?z}

- ruleintro "RIGHT@COMM"; execute();

{(RIGHT @ COMM) => ?x + ?y + ?z}

{?x + ?z + ?y}

The parameterized tactic RIGHT allows one to apply a theorem (supplied as the
parameter) to the right subterm of the target term.

Parameterized tactics can have operators as names:

- start "?x";

{?x}

- ruleintro "?thm1"; ruleintro "?thm2";

{?thm1 => ?x}

{?thm2 => ?thm1 => ?x}

- prove "?thm1**?thm2";

?thm1 ** ?thm2:

?x =

?thm2 => ?thm1 => ?x

[]

The infix ** has been “proved” as a theorem implementing theorem or tactic
composition.

Another elementary use of parameterization is to control the effects of the
converses of theorems which “destroy information”:

- thmdisplay "REFLEX";

REFLEX:

?a = ?a =

true

["REFLEX"]

15

- start "true";

{true}

- revruleintro "REFLEX"; execute();

{REFLEX <= true}

{?a_10 = ?a_10}

Note that the converse of REFLEX introduces a computer-generated new variable.
We would like to have control over what is introduced.

- start "true";

{true}

- initializecounter();

- revruleintro "REFLEX"; execute();

{REFLEX <= true}

{?a_1 = ?a_1}

- assign "?a_1" "?a";

{?a = ?a}

- prove "REV_REFLEX@?a";

REV_REFLEX @ ?a:

true =

?a = ?a

["REFLEX"]

- start "true";

{true}

- ruleintro "REV_REFLEX@3"; execute();

{(REV_REFLEX @ 3) => true}

{3 = 3}

16

The initializecounter command is a technicality; it forces the counter on
computer-generated new variables back to 1 so that the proof will work correctly
if run as a script (there would be problems with the assign command otherwise).
One can see examples here of the use of converses of theorems as rewrite rules
and of the use of global assignment. One can also see that a parameterized
tactic can take objects of a theory as parameters as well as theorems or tactics.

2.7 An Extended Example: Combinatory Logic

As an extended example of the capabilities of Mark2 as a rewriting system, we
present a development of untyped combinatory logic in the style of Curry (see
[4]).

The theory CL is an equational theory. Objects of the theory are called
“combinators”. Atomic terms of the language of this theory are atomic constants
I, S, K, B, C, and any others that may be desired, plus an infinite supply of
variables. The only term construction is function application: if T and U are
terms, (TU) is a term. Excess parentheses are deleted from the left (the opposite
of the default Mark2 convention): ABCD is read (((AB)C)D).

The axioms of CL are as follows:

II: IX = X (for any term X)

KK: KXY = X (for any terms X and Y)

SS: SXY Z = XZ(Y Z) (for any terms X, Y , and Z)

Axioms could be provided for the combinators B and C (of composition and
conversion), but it is more natural to introduce these combinators by definition
(as we will see in the development below).

We begin with declarations and axioms:

- declareinfix "."; (* this is the "function application" internal to CL *)

- setprecedence "." 1; (* this gives the correct grouping *)

- declareconstant "I"; (* atomic combinators *)

- declareconstant "K";

- declareconstant "S";

- axiom "II" "I . ?x" "?x";

- axiom "KK" "K . ?x . ?y" "?x";

- axiom "SS" "S . ?x . ?y . ?z" "?x . ?z . (?y . ?z)";

(* the output from these axiom declarations is omitted *)

The setprecedence command is used to tell the prover that the . operator
of “function application” (in the CL sense) groups to the left rather than to the
right. Mark2 regards all operators with odd precedence as grouping to the right
and all operators with even precedence as grouping to the right.

In this section, some abbreviations of Mark2 command names are used: ri

for ruleintro, with initial a for alt- and r for rev-, p for prove, and s for
start.

We develop some utilities:

17

- start "?x^+?y";

{?x ^+ ?y}

- left();

{?x} ^+ ?y

?x

- ri "?thm";

{?thm => ?x} ^+ ?y

?thm => ?x

- p "LEFT@?thm";

LEFT @ ?thm:

?x ^+ ?y =

(?thm => ?x) ^+ ?y

[]

(* the output from the following very similar proof is suppressed *)

- start "?x^+?y";

- right();

- ri "?thm";

- p "RIGHT@?thm";

RIGHT @ ?thm:

?x ^+ ?y =

?x ^+ ?thm => ?y

[]

(* output from this proof suppressed *)

- declarepretheorem "EVERYWHERE";

- start "?x.?y";

- right(); ri "EVERYWHERE@?thm"; ari "?thm";

- up();left(); ri "EVERYWHERE@?thm"; ari "?thm";

- top();

- ri "?thm";

- p "EVERYWHERE@?thm";

EVERYWHERE @ ?thm:

?x . ?y =

18

?thm => (?thm =>> (EVERYWHERE @ ?thm) => ?x)

. ?thm =>> (EVERYWHERE @ ?thm) => ?y

[]

LEFT, RIGHT, and EVERYWHERE are examples of “structural” tactics which
enable the application of theorems at points other than where the tactic is
actually applied. The LEFT and RIGHT tactics enable application of tactics to
the immediate left and right subterms of the selecte subterm; the EVERYWHERE

tactic allows a theorem to be applied to all subterms of the selected subterm in
a “bottom up” fashion, if the term is built only with the . operator.

We develop an abstraction algorithm along classical lines (proof commands
are given, but output is suppressed; the statement of each theorem proved is
given, followed by its proof):

(* development of an abstraction algorithm *)

(*

ABSI @ ?x:

?x =

I . ?x

["II"]

*)

s "?x";

rri "II"; ex();

p "ABSI@?x";

(*

ABSK @ ?x:

?y =

K . ?y . ?x

["KK"]

*)

s "?y";

initializecounter();

rri "KK"; ex();

assign "?y_1" "?x";

p "ABSK@?x";

(*

ABSS @ ?x:

?T . ?x . (?U . ?x) =

S . ?T . ?U . ?x

["SS"]

19

*)

s "?T . ?x . (?U . ?x)";

rri "SS"; ex();

p "ABSS@?x";

These theorems are the basic clauses of the abstraction algorithm. The param-
eter that each of them takes is the term relative to which abstraction is to be
carried out.

We now declare the name ABS of our abstraction tactic to prepare for its
recursive definition.

declarepretheorem "ABS";

(* a subtactic for handling application expressions *)

(*

ABSAPP @ ?x:

?T . ?U =

(ABSS @ ?x) => ((ABS @ ?x) => ?T) . ((ABS @ ?x)

=> ?U)

["II","KK","SS"]

*)

s "?T.?U";

right(); ri "ABS@?x";

up(); left(); ri "ABS@?x";

top();

ri "ABSS@?x";

p "ABSAPP@?x";

(* the abstraction algorithm itself -- Curry’s (fab) *)

(*

ABS @ ?x:

?t =

(ABSK @ ?x) =>> (ABSAPP @ ?x)

=>> (ABSI @ ?x) => ?t

["II","KK","SS"]

*)

s "?t";

ri "ABSAPP@?x";

ari "ABSI@?x";

ari "ABSK@?x";

p "ABS@?x";

20

(* We demonstrate why this is not a very good algorithm *)

- s "?x.(?y.?z)";

- ri "ABS@?z"; ex();

- left();

- ri "ABS@?y"; ex();

- left();

- ri "ABS@?x"; ex();

- left();

The display which follows is:

{S . (S . (K . S)

. (S . (S . (K . S) . (S . (K . K) . (K . S)))

. (S . (S . (K . S) . (S . (K . K) . (K

. K)))

. (S . (K . K) . I))))

. (S . (S . (K . S)

. (S . (S . (K . S) . (S . (K . K) . (K

. S)))

. (S . (S . (K . S) . (S . (K . K) . (K

. K)))

. (K . I))))

. (S . (K . K) . (K . I)))}

. ?x . ?y . ?z

This is not the optimal form of the composition combinator B!

(* the added steps needed to repair this *)

(* ABSFIX handles the idea of using K on complex terms (not just

atomic terms) which do not contain ?x; it might seem that we would

have a problem recognizing such terms, but it turns out to be easy *)

(*

ABSFIX:

S . (K . ?a) . (K . ?b) . ?x =

K . (?a . ?b) . ?x

["KK","SS"]

*)

s "S.(K.?a).(K.?b).?x";

ri "SS";

ri "EVERYWHERE@KK"; ex();

ri "ABSK@?x"; ex();

p "ABSFIX";

21

(* ABSFIX2 handles the idea of letting ?f rather than S(K?f)I be the

abstract from ?f.?x *)

(*

ABSFIX2:

S . (K . ?a) . I . ?x =

?a . ?x

["II","KK","SS"]

*)

s "S.(K.?a).I.?x";

ri "SS"; ri "EVERYWHERE@KK"; ri "EVERYWHERE@II"; ex();

p "ABSFIX2";

(* the following commands modify the tactic ABS to incorporate new steps *)

ae "ABS";

ri "ABSFIX";ri "ABSFIX2";

rp "ABS@?x"; (* rp is the short form of the "reprove" command *)

(*

ABS @ ?x:

?t =

ABSFIX2 => ABSFIX => (ABSK @ ?x) =>> (ABSAPP @ ?x)

=>> (ABSI @ ?x) => ?t

["II","KK","SS"]

*)

(* we repeat the development of the B combinator from above *)

- s "?x.(?y.?z)";

- ri "ABS@?z"; ex();

- left();

- ri "ABS@?y"; ex();

- left();

- ri "ABS@?x"; ex();

- left();

(* resulting display: *)

{S . (K . S) . K} . ?x . ?y . ?z

(* things come out much simpler! *)

22

We develop a reduction algorithm. The infix *> between theorems has the
following effect: when thm2 *> thm1 is applied, one applies thm1, then further
applies thm2 only in case thm1 succeeds.

(* reduction algorithm *)

(*

RED:

?t =

(RED *> SS) =>> (RED *> KK) =>> (RED *> II)

=> (RIGHT @ RED) => (LEFT @ RED) => ?t

["II","KK","SS"]

*)

- declarepretheorem "RED";

- s "?t";

- ri "LEFT@RED"; ri "RIGHT@RED";

- ri "RED*>II";

- ari "RED*>KK";

- ari "RED*>SS";

- p "RED";

We give an example of the use of the definition facility of Mark2 (which will be
further discussed below).

(* we define the B combinator and prove its characteristic theorem *)

defineconstant "B" "S . (K . S) . K";

The effect of this command is to create the following theorem:

B:

B =

S . (K . S) . K

["B"]

(* a theorem is developed for B analogous to the characteristic theorems

of the primitive combinators *)

(*

BB:

B . ?x . ?y . ?z =

?x . (?y . ?z)

["B","II","KK","SS"]

*)

- s "B . ?x . ?y . ?z";

23

- ri "EVERYWHERE@B"; (* definitional expansion followed by reduction *)

- ri "RED"; ex();

- p "BB";

We demonstrate the possibility of a tactic operating on lists of parameters of
arbitrary length in Mark2:

(* we develop an even more general abstraction tool *)

- setprecedence "," 1; (* give pairing the same left associativity as

internal application *)

- dpt "ABSLIST";

- s "?t";

- ri "ABS@?y";

- ri "LEFT@ABSLIST@?x";

- p "ABSLIST@?x,?y";

ABSLIST @ ?x , ?y:

?t =

(LEFT @ ABSLIST @ ?x) => (ABS @ ?y) => ?t

["II","KK","SS"]

The prover allows lists of arguments to be supplied to tactics linked by the
predeclared operator , (ordered pair). This tactic abstracts relative to its last
argument, then invokes itself with the remainder of its list of parameters as its
argument. It will fail with an atomic parameter, so the first argument in the
list needs to be a dummy (we always use 0). The structure of the tactic makes
it a good idea to change the grouping of the , operator from the default.

(* once again, we develop the B combinator *)

- s "?x.(?y.?z)";

- ri "ABSLIST@0,?x,?y,?z"; ex();

(* this works "all at once"; now we can develop other familiar

combinators *)

(* a last example: the (suppressed) output is suggested

by the form of the following definition *)

(* the C combinator -- conversion *)

- s "?x.?z.?y";

- ri "ABSLIST@0,?x,?y,?z"; ex();

- defineconstant "C" "S . (S . (K . S) . (S . (K . K) . S)) . (K . K)";

(* its characteristic theorem *)

24

(*

CC:

C . ?x . ?y . ?z =

?x . ?z . ?y

["C","II","KK","SS"]

*)

- s "C.?x.?y.?z";

- ri "EVERYWHERE@C"; ri "RED"; ex(); (* definitional expansion + reduction *)

- p "CC";

The choice of combinatory logic as the vehicle for an extended example of the
rewriting capabilities of the prover is not accidental. As we will explain in
more detail below (under abstraction) the development of the tactic language
was originally driven by the requirements of reduction and synthetic abstrac-
tion algorithms. Independently of this consideration, the example affords an
illustration of the ability to carry out nontrivial sorts of “computation” using
tactics.

The interested reader may find a more extended development of combinatory
logic, including an algorithm for strong reduction, in a longer file on the author’s
Web page from which the example as given here is adapted.

2.8 Arithmetic and “Functional Programming”; Technical
Rewriting Issues

Certain terms are rewritten by the tactic interpreter without explicit rewriting
annotations. Arithmetic expressions with the predeclared operators +!, *!, -!,
/!, %!, <!, and =! are automatically evaluated by the tactic interpreter; these
are operations and relations of infinite precision unsigned integer arithmetic (the
relations give boolean output (true or false)). Expressions defined by cases
with an explicit boolean hypothesis are automatically collapsed: true || ?x

, ?y is automatically rewritten to ?x and false || ?x , ?y is automatically
rewritten to ?y (the predeclared operators used here are discussed below under
the conditional layer).

The user may create similar effects using “functional programming” func-
tionalities of the prover. The user may “bind” a function to a function name or
an operator with instructions that this term always be applied when the function
or operator is present in a term of the correct form. The form of the theorem
needs to be appropriate. For example, if the user has introduced a function
car with theorem CAR asserting (car @ ?x , ?y) = ?x and further issues the
command proveprogram "car" "CAR", then the tactic interpreter will auto-
matically apply the theorem CAR wherever it sees the function car applied to
a term. A preclared prefix # is provided which has the effect of suppressing
the execution of any “functional program” attached to the top-level function or
operator of its argument. There is another predeclared prefix ## which imple-
ments laziness: rewriting annotations inside such a term are ignored unless and

25

until a rewrite from outside the scope of the prefix affects the term.
Mark2 is quite different in its aims from other rewriting systems, to the

point where it is difficult to compare them. Other rewriting systems usually
involve aggressively rewriting with a list of given rules, using the rules wherever
it is possible to apply them. In Mark2, the user (or a program written by the
user) are supposed to indicate how rules are to be applied in detail. In standard
rewriting systems, reversible rules are a problem, since obvious looping possibil-
ities arise. In Mark2 the use of converses of rewrite rules is not a difficulty. (It is
interesting to note that if the conversion infixes <= and <<= are suppressed, the
logic of Mark2 changes from equational logic to precisely the “rewriting logic”
proposed by the developers of OBJ (see [19]).

Mark2 can be viewed as a rewrite system of the usual sort, in which the
targets of rewrite rules are not the arguments of rewriting annotations but the
entire terms of form thm => term and other related forms (as well as arith-
metic terms and those on which “functional programming” acts). One can then
ask questions of familiar kinds. For example, Mark2 is “almost” confluent, if
“functional programming” is ignored. The one failure of confluence is in the be-
haviour of the alternative infixes =>> and <<=; in a term ?thm n =>> ... =>>

?thm 2 => ?thm 1 => term, rewriting any subterm on the right side of a =>>

may cause the final output to change. We regard this failure as unimportant,
for a reason which can be expressed precisely: if we redefined the alternative in-
fixes so that (?thm 2 =>> ?thm 1) => ?term had the behaviour now assigned
to ?thm 2 =>> ?thm 1 => ?term, then changed the precedence of the alterna-
tive infixes from 0 to 1 (which would cause them to group to the left), terms
with alternative rule infixes would look and behave exactly as they do now,
except that the subterms which we must avoid executing to preserve confluence
now would not exist at all. We do not see any reason why a user would invoke
the tactic interpreter on a term to the right of an alternative infix, so we are
not inclined to make the indicated change. Another condition which needs to
be noted to justify our claim that the system is essentially confluent is that
the prover does not allow rewrite rules with rewriting annotations in their left
sides to be applied; this is enforced by not allowing any term to match a term
with rewriting annotations in it. If we view Mark2 as a conventional rewriting
system, the redexes are those terms with rewriting annotations whose argu-
ments contain no rewriting annotations; this enforces the diamond property.
“Functional programming” complicates the definition of a redex somewhat.

Mark2 tactics can, of course, implement rewriting strategies of the usual
more aggressive sort, as well as refinements of such strategies.

An area in which we did some work with EFTTP (the precursor of Mark2)
which has not yet been upgraded to Mark2 is the investigation of “parallel
execution orders” for the prover. A “breadth-first” strategy of reduction might
have some advantages over the current “depth-first” approach (though speed
would not be one of them, at least on a conventional machine). Such a strategy
would allow the prover to carry out reductions higher up in the parse tree when
it recognized that they would not interfere with reductions of terms at lower
levels; this would allow some non-strict execution order (allowing some tactics

26

to terminate which otherwise would not). An element of nondeterminism would
be introduced, because theorems in lists of alternatives might be applied in
preference to theorems appearing earlier in the list because it would become
clear sooner that they could be applied.

2.9 Theorem Export and Theorem Search

2.9.1 Theorem Export

The reader may have noticed that every theorem proved by Mark2 is annotated
with a list of names of theorems. These theorems are the axioms and definitions
on which Mark2 determines that the proof of the theorem depends.

Lists of dependencies are maintained for each theorem in order to support
a facility of theorem export : Mark2 allows theorems proved in one theory to be
exported to another under suitable conditions.

The prerequisites for export of a theory from theory A to theory B is the
existence of a “view” of theory B from theory A (this term is borrowed from
the developers of IMPS ([7]). The view is a list of translations of names of
axioms and definitions, and possibly of other symbols. It does not need to be
exhaustive: Mark2 will match theorems of A with their translations into B and
either reject the view and abort the export (if the theorems do not match in
form) or extend the translation implied by the view as necessary. For example, if
the commutativity of + in A matches the commutativity of * in B, the translation
table will be extended to force + to be translated by *; if the commutativity of
+ in A is reported to match a theorem in B which does not have the form of a
commutative law, or if we are already committed to a different translation of +,
the attempt at theorem export will fail. The export of a theorem via a view will
succeed if a coherent translation of the axioms on which the theorem depends
into terms of theory B can be obtained from the view. The theorem export
system will export tactics just as it exports theorems; all tactics or theorems
called by the tactic explicitly exported will also be exported (recursively). Name
collisions are automatically avoided.

An effect of the requirements of the theorem export system is that, while the
system does allow theorems to be modified in form or tactics to be debugged
(by reproving a theorem/tactic of the same name) it never allows a theorem or
tactic to be modified in a way which introduces additional dependencies, since
this would corrupt the dependency information given about other tactics which
invoke the given theorem or tactic, compromising the validity of theorem export.

The theorem export system is fairly cumbersome to invoke and has not been
used extensively; it has however been valuable for exporting complex recursively
defined tactics from one theory to another. We would like to improve the the-
orem export system to allow, for example, the user to be able to search for
theorems in theories other than the one in which he/she is currently working
which might be applicable to a current situation.

27

2.9.2 Theorem Search

The system allows the user to search for theorems in the current theory ap-
plicable to a given situation. One can ask for theorems which match a given
equation. One can ask for a theorem which will convert the current term to a
given form. One can ask for a list of theorems applicable to the current selected
subterm. All of these features have the effect that it is not too unpleasant to
work in a theory defined by another user (or by oneself a long time ago); one
can discover the names of theorems one needs fairly painlessly.

Finally, most daringly, it is possible to invoke theorem searches automati-
cally: a “theorem” of the form ?x=?y can be executed in the tactic language,
having the effect of the first theorem the prover finds in its theorem list which
justifies the equation. When equations are used as theorems in a tactic, inter-
esting effects can be achieved, since theorem searches can then be automatically
set up by the tactic rather than the user, though tactics which automatically
search for theorems tend to be slow. This is another feature which invites further
development.

3 The Conditional Layer

This layer of the logic of Mark2 is devoted to the properties of expressions
defined by cases. The canonical form for expressions of this kind is (?a = ?b)

|| ?x , ?y, which can be read “if a = b then x else y”. Terms of the form ?p

|| ?x , ?y, where ?p is not an equation, are understood to be equivalent to
(true = ?p) || ?x , ?y; terms of the form ?p || ?q, where ?q is not a pair,
are currently treated by the prover as ill-formed expressions.

In an expression of the form ?p || ?x , ?y, we refer to ?x and ?y as the
cases and to ?p as the hypothesis.

The logical properties of the conditional construction which drive the han-
dling of conditional expressions in Mark2 are the following (originally proposed
as axioms for a combinatory logic implementing first-order logic with equality
in the author’s preprint [16]; see further discussion of this system in a later
section):

projection (1): (if true then x else y) = x.

projection (2): (if false then x else y) = y.

distribution: C[if p then x else y] = if p then C[x] else C[y], where C[. . .]
represents any context.

hypothesis: (if a = b then C[a] else c) = (if a = b then C[b] else c)

Auxiliary properties which handle the nature of equations and hypotheses
of odd forms are:

equation: (a = b) = if a = b then true else false.

28

odd hypothesis: (if p then x else y) = (if true = p then x else y)

The role of arbitrary contexts in the distribution and hypothesis properties
of the conditional was originally handled by using abstraction machinery to re-
place a context C[x] with a function application f(x). This is no longer done,
for three reasons: the distribution and hypothesis properties can be adequately
handled using a finite collection of instances; the abstraction system of Mark2
does not allow abstraction from every context, so an implementation using ab-
straction would not be fully effective or would require additional special cases;
an approach based on abstraction turns out to be tactically flawed as a way to
prove theorems.

The schemes of distribution and collection are replaceable by the following
finite list of properties (here we use Mark2 notation, because the structure of
Mark2 syntax determines the list):

positive left subterm: (?p || (?a ∧+ ?b) , ?c) = (?p || ((?p || ?a ,

?x) ∧+ ?b) , ?c)

negative left subterm: (?p || ?a, ?b ∧+ ?c) = ?p || ?a , (?p || ?x,

?b) ∧+ ?c)

positive right subterm: (?p || (?a ∧+ ?b) , ?c) = (?p || (?a ∧+ ?p ||

?b, ?x) , ?c)

negative right subterm: (?p || ?a, ?b ∧+ ?c) = ?p || ?a, ?b ∧+ (?p

|| ?x, ?c))

positive value: (?p || [?a] , ?b) = (?p || [?p || ?a , ?x] , ?b)

negative value: (?p || ?a, [?b]) = (?p || ?a , [?p || ?x , ?b])

limited hypothesis: ((?a = ?b) || ?a , ?c) = ((?a = ?b) || ?b , ?c)

case introduction: ?x = ?p || ?x , ?x

The use of this list of properties allows one to avoid using the context C[. . .]
in the hypothesis property by making use of the first six properties to bring
a copy (or copies) of the hypothesis down to the level(s) of the occurrence(s)
of one side of the equation which are to be replaced with the other, then ap-
plying the limited hypothesis property in place of the full hypothesis property.
All instances of the distribution property can be proved by first applying case
introduction to introduce a hypothesis at the top level of the term, then using
the first six properties to propagate hypotheses into the term which can be used
to eliminate the identical hypothesis where it occurs in subterms.

It requires a little work to show that the four properties given originally do
imply the first six properties on the second list. It is sufficient to exhibit the
general method of proof by proving the positive and negative value properties
using the first four properties.
?p || [?a] , ?b =

29

(true = ?p) || [true || ?a , ?x] , ?b (by odd hypothesis and first pro-
jection) =
(true = ?p) || [?p || ?a , ?x] , ?b (by replacing true with ?p using the
hypothesis property) =
?p || [?p || ?a , ?x] , ?b (by odd hypothesis) .
The same technique works for all the positive properties. The negative proper-
ties are a little trickier:
?p || ?a, [?p || ?x, ?b]

= (odd hypothesis) (true = ?p) || ?a, [?p || ?x , ?b]

= (equation) ((true = ?p) || true , false) || ?a, [?p || ?x, ?b]

= (distribution) (true = ?p) || (true || ?a , [true || ?x, ?b]) , (false

|| ?a , [false || ?x , ?b])

= (projection) (true = ?p) || ?a , [?b]

= (odd hypothesis) ?p || ?a, [?b].
The method of proof is similar for the other negative properties.

The equation, odd hypothesis, and case introduction hypotheses are provided
as predeclared axioms by the prover. The subterm, value, and limited hypothesis
properties are supported by “hard-wired” functions of the prover in a way that
we will now describe.

The application of the subterm and value properties requires a strategy in
which the hypothesis is duplicated ever deeper into the term being manipulated.
The prover allows the application of such a strategy in effect without the syn-
tactical cost by maintaining a list of hypotheses which are locally applicable and
the senses in which they apply (positive or negative) as part of its navigation
functions. The limited hypothesis property is available in the form of a “tac-
tic” 0 |-| n, where n is a numeral, which will replace the current subterm, if
it is an instance of the left side of the n-th hypothesis (which needs to be an
equation), with the right side; if 0 |-| n is applied in the converse sense (using
<= instead of =>), the right side of the hypothesis will be replaced with the left
side. The subterm and value properties are available as a tactic 1 |-| n (with
a variant 2 |-| n), which will eliminate an occurrence of the n-th hypothesis
as the hypothesis of the current subterm, with the case selected to replace the
subterm being determined by the sense of the n-th hypothesis. The converse
will introduce a new occurrence of a hypothesis identical to the n-th hypothesis,
with cases the current subterm and a new variable (or parameter supplied to the
tactic, in the case of the 2 |-| n variant form), their order being determined
by the sense of the n-th hypothesis.

These built-in functions are fully supported in the tactic language; they can
be introduced and executed automatically by recursive tactics. In this context,
a phenomenon must be noted which will be even more marked in the abstraction
layer: the notion of substitution can no longer be defined in the most naive way.
The refinement needed is simple in this case: a term with instances of rewriting
annotations i |-| n will need to have all the indices n incremented by a suitable
amount if it is substituted into a conditional expression, so as to preserve the
condition that each occurrence of i |-| n is a reference to the hypothesis of
the n-th conditional expression from the top of the term containing the given

30

rewriting annotation.
An effect of the demands of the conditional layer is that the prover always

rewrites the hypothesis of a case expression as far as possible before doing any-
thing with the cases, so that it will know the correct meanings of i |-| n’s that
it encounters in the cases. Since the tactic interpreter automatically collapses
case expressions with hypothesis true or false, this means that non-strict exe-
cution can occur; a subexpression which might otherwise not terminate may be
eliminated due to the reduction of a hypothesis to a boolean value. This proves
useful in working with recursively defined notions.

In the discussion of the abstraction layer below, there will be found a dis-
cussion of the reasons why an attempt to implement the functions of the con-
ditional layer in pure rewriting terms, while possible, proved very inconvenient.
The sense in which we think that it fails to be a pure rewriting system is that
it involves the use of built-in tactics whose meaning depends on their context
(as noted above, the alternative rewriting annotation mechanism already breaks
the prover as a “pure” rewriting system, but not as definitively).

3.1 Examples of Conditional Layer Functions

We first give an example of the modified notion of substitution required with
the introduction of this layer:

- start "(?a=?b)||?x,?y";

- assign "?x" "(?c=?d)||((0|-|1)=>?c),?e";

Notice that the expression to be substituted for the variable ?x contains a
rewriting annotation referring to the hypothesis ?c=?d. When we carry out this
assignment, the rewriting annotation is renumbered to preserve its reference:

{(?a = ?b)

|| ((?c = ?d) || ((0 |-| 2) => ?c) , ?e) , ?y}

Normally, a rewriting annotation would not be introduced in this way (ruleintro
or its relations would be used) but this is the easiest way to exhibit this substi-
tution phenomenon. It usually occurs, invisibly to the user, in the course of the
execution of tactics.

Since the rewriting annotation in this term refers to the equation ?c=?d and
the term to which it is applied is ?c, its execution has an interesting effect:

- execute();

{(?a = ?b) || ((?c = ?d) || ?d , ?e) , ?y}

The first example proof is a proof that the product of two real numbers can
be zero iff one of the factors in the product is zero. We begin with basic axioms
relating 0, 1, multiplication, and multiplicative inverse:

31

- declareinfix "*";

- axiom "COMM2" "?x*?y" "?y*?x";

- axiom "ASSOC2" "(?x*?y)*?z" "?x*?y*?z";

- axiom "TIMESZERO" "0*?x" "0";

- declareunary "|/";

- axiom "ONE" "1*?x" "?x";

- axiom "INV" "?x* |/?x" "(0=?x)||0,1";

- axiom "ZERONOTONE" "0=1" "false";

The form of the axiom of multiplicative inverse deserves comment. We treat
the multiplicative inverse of 0 as an otherwise unspecified real number; thus,
?x * |/?x will have the value 0 when ?x is 0 (the axiom TIMESZERO would also
allow us to prove this); in other cases, we get the expected result of 1.

We display the axiom of case introduction and prove a related tactic, which
allows us to supply the hypothesis as a parameter.

CASEINTRO:

?x =

?y || ?x , ?x

["CASEINTRO"]

(* parameterized "CASEINTRO" *)

(*

PCASEINTRO @ ?p:

?x =

?p || ?x , ?x

["CASEINTRO"]

*)

- initializecounter();

- s "?x";

- ri "CASEINTRO"; ex();

- assign "?y_1" "?p";

- prove "PCASEINTRO@?p";

Finally, before beginning the proof, we introduce the logical connective of
disjunction by definition from the case expression primitives:

- defineinfix "OR" "?p|?q" "?p || true, ?q || true , false";

This causes the declaration of the new connective and the introduction of
the following theorem:

OR:

?p | ?q =

?p || true , ?q || true , false

["OR"]

32

The proof follows. We will show all prover commands, but only selected
prover responses. Duplicate displays of a term and an identical selected subterm
will be suppressed. Comments in the proof text itself may be useful.

- start "0=?x*?y";

- ri "PCASEINTRO@0=?x"; ex();

This command introduces the hypothesis 0 = ?x, giving the display

{(0 = ?x) || (0 = ?x * ?y) , 0 = ?x * ?y}

We now go to the case where 0 = ?x is true:

- right();left(); (* case where 0 = ?x *)

- right();left(); (* now looking at ?x *)

At this point we see the following:

(0 = ?x) || (0 = {?x} * ?y) , 0 = ?x * ?y

?x

Application of the built-in tactic 0 |-| 1 in its converse form will convert
the selected subterm ?x to 0.

- rri "0|-|1"; ex(); (* converse changes ?x to 0 *)

- up();

- ri "TIMESZERO"; ex(); (* we now see a multiplication by 0 *)

- up();

We now see this:

(0 = ?x) || {0 = 0} , 0 = ?x * ?y

0 = 0

We can apply the axiom REFLEX seen above to convert the selected subterm
to true, completing the proof of this case.

- ri "REFLEX"; ex(); (* proof of this case is complete *)

- up();right();

- ri "PCASEINTRO@0=?y"; ex(); (* the status of ?y is relevant if ?x is not 0 *)

At this point, we introduce the hypothesis 0 = ?y (but only under the hy-
pothesis that 0 = ?x is false). We see the following:

(0 = ?x) || true

, {(0 = ?y) || (0 = ?x * ?y) , 0 = ?x * ?y}

(0 = ?y) || (0 = ?x * ?y) , 0 = ?x * ?y

33

We now “move” into the two cases thus defined in turn. The case where 0 =

?y is handled in a manner virtually identical to the way in which the previous
case is handled (but note the use of 0 |-| 2 instead of 0 |-| 1).

- right();left(); (* the case where 0 = ?y *)

- right();right();

- rri "0|-|2"; ex(); (* we need to refer to hypothesis 2 here *)

- up();

- ri "COMM2"; ri "TIMESZERO"; ex();

- up();

- ri "REFLEX"; ex(); (* this completes the proof of this case *)

- up();right();

(* this takes us to the last case, which we need to show equal to false,

not true; where ?x and ?y are both non-zero, ?x*?y will be non-zero *)

We have now arrived at the last case, which is the really interesting one. We
expect to be able to evaluate 0 = ?x * ?y as false in this case. We do this by
using the theorem EQUATION, which implements the “equation” auxiliary prop-
erty of case expressions above, to split 0 = ?x * ?y, then move into the case
where 0 = ?x * ?y is true, and show that under the accumulated hypotheses
we can rewrite true into false; this case is contradictory. This is a standard
method of proof in Mark2.

- ri "EQUATION"; ex();

We pause to give the display at this point, then resume the proof:

(0 = ?x) || true , (0 = ?y) || true

, {(0 = ?x * ?y) || true , false}

(0 = ?x * ?y) || true , false

(* proof resumes *)

- right();left(); (* we move to the subterm "true" *)

- initializecounter();

- rri "REFLEX"; ex();

- assign "?a_1" "?x*?y*(|/?x)* |/?y";

We have now rewritten the instance of true to which we moved to the
following form:

(?x * ?y * (|/ ?x) * |/ ?y) = ?x * ?y * (|/ ?x)

* |/ ?y

We use a prover command to display the current hypotheses:

34

- lookhyps();

1 (negative):

0 = ?x

2 (negative):

0 = ?y

3 (positive):

0 = ?x * ?y

Our strategy is to show that we can use these hypotheses to rewrite one of
the instances of ?x * ?y * (|/ ?x) * |/ ?y to 0 and the other to 1, which
will enable us to rewrite the equation to false!

- left();

- rri "ASSOC2"; ex();

The selected subterm is now (?x * ?y) * (|/ ?x) * |/ ?y, after regroup-
ing, which will allow us to move left and use hypothesis 3 followed by the axiom
TIMESZERO to convert the left side of the equation to 0.

- left();

- rri "0|-|3"; ex();

- up();

- ri "TIMESZERO"; ex();

- up();right(); (* we move to the right side of the equation *)

- rri "ASSOC2";rri "ASSOC2"; ex();

- left();left();

- ri "COMM2"; ex();

- up();

- ri "ASSOC2"; ex();

- right();

The right side of the equation now has the form 0 = (?y * {?x * |/ ?x})
* |/ ?y, where the braces indicate the position of the selected subterm. The
selected subterm ?x * |/ ?x is a target for the axiom INV governing the mul-
tiplicative inverse.

- ri "INV"; ex();

We pause to display the entire situation.

(0 = ?x) || true , (0 = ?y) || true

, (0 = ?x * ?y)

|| (0 = (?y * {(0 = ?x) || 0 , 1}) * |/ ?y)

, false

(0 = ?x) || 0 , 1

The built-in tactic 1 |-| 1 can now be used to collapse the selected subterm
to its negative case, since its hypothesis is identical to hypothesis 1.

35

- ri "1|-|1"; ex();

- up();

- ri "COMM2"; ri "ONE"; ex();

up();

The right side of the equation now has the form ?y * |/ ?y, to which we
can apply the same strategy of applying INV and collapsing the resulting case
expression (but using 1 |-| 2, since hypothesis 2 is now the relevant one).

- ri "INV"; ex();

- ri "1|-|2"; ex();

- up();

We have now converted the equation to 0 = 1, which an axiom allows us to
rewrite to false.

- ri "ZERONOTONE"; ex();

- up();up();

We again display the entire situation.

(0 = ?x) || true , (0 = ?y) || true

, {(0 = ?x * ?y) || false , false}

(0 = ?x * ?y) || false , false

Rewriting with the converse of CASEINTRO will convert the selected subterm
to false.

- rri "CASEINTRO"; ex();

- top();

The resulting top-level expression is (0 = ?x) || true , (0 = ?y) || true

, false, which admits rewriting using the converse of the definition of logical
disjunction given above, which gives us the final form of the theorem.

- rri "OR"; ex();

- prove "FACTORZERO";

FACTORZERO:

0 = ?x * ?y =

(0 = ?x) | 0 = ?y

["ASSOC2","CASEINTRO","COMM2","EQUATION","INV","ONE","OR","REFLEX",

"TIMESZERO","ZERONOTONE"]

This proof is rather lengthy, but it should be noted that it is on a completely
“nuts-and-bolts” level; a standard proof would presume some rules of inference
for propositional logic which are being handled here by explicit manipulation

36

of case expression structures. Some of its elements could be facilitated by tac-
tics in a richer environment; for example, tactics could carry out the algebraic
regroupings in the last case in single steps.

Our final example is a proof of the commutative property of disjunction
(as defined above), suggesting how case expression machinery can be used to
reason in propositional logic. A complete tautology checker is an involved but
not difficult tactic to develop.

- s "?p|?q";

- ri "OR"; ex();

- ri "PCASEINTRO@?q"; ex();

We introduce the starting term ?p|?q and expand the expression by intro-
ducing the hypothesis ?q. We see

?q || (?p || true , ?q || true , false) , ?p

|| true , ?q || true , false

Our strategy will be to eliminate the two occurrences of ?q as hypothesis
of proper subterms of this case expression and apply obvious rewrites to the
results.

- right();left();

- right();right();

- ri "1|-|1"; ex();

This is the situation after the collapse of the hypothesis ?q in the positive
case. The obvious rewriting opportunity is to apply the converse of case intro-
duction to the conditional expression with true as both of its cases.

?q || (?p || true , {true}) , ?p || true , ?q

|| true , false

true

We carry this out and proceed to the other case.

- up();up();

- rri "CASEINTRO"; ex();

- up();right();

- right();right();

- ri "1|-|1"; ex();

This is the form of the expression after the collapse of the hypothesis ?q in
the negative case. This has the correct form to be the target of the converse of
the definition of disjunction; we go to the top and cmplete the proof.

37

?q || true , ?p || true , {false}

false

(* the proof resumes *)

- top();

- rri "OR"; ex();

- p "ORCOMM";

ORCOMM:

?p | ?q =

?q | ?p

["CASEINTRO","OR"]

4 The Abstraction Layer

4.1 Definition

The simplest form of definition does not involve us in abstraction: this is a
definition of a constant as seen above:

- defineconstant "C" "S . (S . (K . S) . (S . (K . K) . S)) . (K . K)";

in which a new atomic constant is introduced and given a meaning. The prover
does need to check that the new definition does not involve any objects not yet
declared; this enforces non-circularity, because it is also required that the object
to be defined has not been declared already.

As we have seen, Mark2 does allow the definition of operators as in the
example

- defineinfix "OR" "?p|?q" "?p || true, ?q || true , false";

These are actually not problematic either.
Our first encounter with the functions of the abstraction layer is when we

attempt to define constants or operators with parameters, i.e., when we define
functions or operators on functions, as in

- defineconstant "Double@?x" "?x+?x";

or

- defineinfix "ADD_FUN" "(?f ++ ?g) @ ?x" "(?f @ ?x) + ?g @ ?x"

The additional parameter is needed in the second example as the name of the
theorem which will be generated by the definition process.

Such definitions cannot be allowed without some restrictions. Clearly we
can define the negation operator of propositional logic thus:

- defineinfix "NOT" "~?x" "(true = ?x) || false, true";

38

(here we follow the convention of Frege that any object other than the truth
value “true” should be treated as being false).

We could then (if parameterized definitions were unrestricted) make the
following curious definition:

- defineinfix "Curry_Paradox @ ?x" "~ ?x @ ?x";

We would then find that Curry Paradox @ Curry Paradox was equal to
its own negation by definition, from which the built-in tactics and predeclared
axioms of the conditional layer would suffice to derive true = false.

Mark2 avoids such paradoxical definitions by a restriction on abstraction in
general which is perhaps easiest to understand in definitions (where variable
binding is not involved). The restriction can be thought of as a system of types,
though objects are not typed in the underlying logic of Mark2. These ideas
are based ultimately on the definition of Quine’s set theory “New Foundations”
([21]). We have discussed their application to a λ-calculus in our [15].

The type system to which we make reference is one in which the types are
indexed by the natural numbers. The intended relationship between successible
types is that type n + 1 is the type of functions with type n input and type n
output. Every Mark2 operator is assigned type information in the form of a pair
of integers called its “left type” and “right type”. The meaning of these numbers
is that if an operator + has left type L and right type R, and a term T + U is
assigned type N , then T must be assigned type N + L and U must be assigned
type N + R. The intended relation of the type scheme to function application
dictates that the left type of @ be 1 and its right type 0. Similarly, the relation
of the type scheme to function application indicates that if [T] is assigned type
N , T should be assigned type N − 1. The ordered pair and equality operators
are assigned left and right types of 0, as is the conditional-building infix.

A term is said to be stratified if and only if each free variable in the term
is assigned the same type wherever it appears (when the entire equation is
assigned any fixed type). A definition type-checks correctly in Mark2 if the
equation term representing the theorem proposed as a definition is stratified.
For example, the theorem ADD FUN proposed as a definition above is legitimate:
if one assigns type 0 to the whole equation ((?f ++ ?g) @ ?x) = (?f @ ?x)

+ ?g @ ?x then one assigns type 0 to ?x and type 1 to ?f and ?g wherever they
appear. One assumes here that + has left and right type 0; one knows that ++

will have left and right type 0 because it is introduced by the declareinfix

command. Special declaretypeinfix and definetypedinfix commands are
needed to declare or define operators with nonzero left and/or right types. The
definition of Curry Paradox is not stratified: there is no way to assign a single
type to ?x in the expression ?x @ ?x, which is enough to show that there is no
way to do this in the full proposed defining theorem.

Although a notion of “relative type” of terms is employed in definitions,
there are no type restrictions on the formation of Mark2 terms. ?x @ ?x is a
perfectly valid term in Mark2, though it cannot be defined as a function of ?x.

We will see in later sections that some refinements of the notion of stratifi-
cation as described here will be needed.

39

The freedom from paradox of permitting all function definitions which can
be stratified follows from the consistency of NFU , the version of Quine’s set
theory “New Foundations” ([21]) which was shown by R. B. Jensen to be con-
sistent relative to the usual set theory in [18]. The results of Jensen’s paper are
sufficient for the level of mathematical strength needed here; for the equivalence
of formulations in terms of functions to formulations in terms of sets, see the
author’s [11], [15], [12] and [17].

4.2 Stratified λ-Calculus

It is often convenient to be able to introduce functions without having to define
a new name for each function used. Mark2 supports a notation for functions
using what amounts to λ-abstraction.

Up to this point, we have not allowed bound variables in our terms, and
bracketed terms [T] have been understood to refer to constant functions with
the value T. The referent of a bracketed term [T] is actually a λ-abstraction;
the variable bound in a given bracket is ?1 if it is the outermost bracket in the
term, ?2 if it is a proper subterm of exactly one bracket term, and, in general,
?n if it is a proper subterm of exactly n− 1 bracket terms. This scheme of “de
Bruijn levels” (not de Bruijn indices!) is derived from de Bruijn’s [5].

Furthermore, there is a stratification restriction on the formation of bracket
terms: the relative type of the variable bound in a bracket term [T] must be
the same as the type assigned to T everywhere that it occurs in T (both of these
types are one less than the type assigned to [T] itself). The term [∼ ?1 @ ?1]

must be ill-formed for the same reason that the definition of Curry Paradox

above must fail.
It should be noted that the notion of stratification applied in checking the

well-formedness of a bracket term is not the same as the notion of stratification
applied in checking definitions; the former is a restriction on free variables,
whiel the latter is a restriction on bound variables. Bracket terms appearing in
definitions are required to be stratified in the sense applying to bracket terms;
there is no restriction on free variables appearing with more than one type in
stratified bracket terms.

The use of variable binding necessitates a further change in the definition of
substitution; the use of the particular variable-binding scheme we have adopted
minimizes the complexity of this change.

The required redefinition of substitution (and also of matching) is driven
by the need to preserve the correlations of bound variables with their binding
contexts.

Each subterm of a given term can be assigned a “level”, which is the number
of bracket terms of which the occurrence is a proper subterm (we are counting
multiple occurrences of subterms as distinct subterms). This natural number
corresponds in its role to the more complex “environment” which we would
need to keep track of in an implementation of conventional variable binding. (A
similar notion of level appears in the detailed implementation of substitutions
involving the built-in tactics of the conditional layer).

40

Each subterm has a minimum level at which it can appear. For example,
the term ?1 can appear only at levels ≥ 1, since the variable ?1 will otherwise
have no binding context. Certain typographically identical terms have different
meanings at different levels: for example, [?1] refers to the identity function
at level 0, but to the constant function with value ?1 at each higher level. This
can be inconvenient, and would be avoided if the scheme of deBruijn indices
were used instead of deBruijn levels (or if conventional variable binding were
used). The advantage of deBruijn levels over deBruijn indices is that a bound
variable has the same name throughout its binding context. The advantage of
either of the deBruijn schemes over conventional variable binding is the extreme
simplicity of the “environment”.

In a subterm appearing at level L, variables ?n with n > L are bound in
the subterm (“locally bound”) and variables ?n with n ≤ L are “locally free”
(they are bound in a larger context). A term appearing at a level M > L will
match this term iff it is the result of increasing the index of each locally bound
variable by M − L and leaving the indices of “locally free” variables alone.
Observe that the resulting term will have no variables ?n with L < n ≤ M .
This constraint applies when we discuss the reverse direction of matching: a
term appearing at a level M < L will match a given term at level L iff it
contains no ?n with M < n ≤ L and it is the result of decreasing the index of
each locally bound variable by L −M while leaving the indices of locally free
variables alone (a locally free variable should not become locally bound in the
course of a substitution). The definition of substitution follows the definition
of matching: a term to be substituted into a context at level L from a context
at level M is replaced in the level L context by a term that would match its
occurrence at level M .

The navigation facility of Mark2 keeps track of the level of the current term,
and uses this to control the matching and substitution involved in the applica-
tion of rewrite rules. The implementation of the tactic language also needs to
take the changing levels of terms at which rewriting annotations are generated
and “executed” automatically in the course of the execution of a tactic. The
lookhyps command of the conditional layer always displays hypotheses in the
form appropriate to the current level (promoting bound variables in hypothe-
ses so that they have the same meanings as bound variables in the currently
selected subterm). Our experience is that users adapt successfully to the use of
deBruijn levels in place of conventional bound variables.

Mark2 supports the semantics of bracket terms as functions with two pow-
erful built-in tactics, BIND and EVAL. The tactic BIND takes a parameter: the
effect of execution of BIND @ T is to rewrite the target term into a bracket term
applied to T, if stratification restrictions permit. It is similar to ABS in the com-
binatory logic example above. EVAL, when applied to a term of the form [T] @

U, will carry out the indicated function application (this will always succeed).
It is analogous to RED in the example above.

A further refinement of the definition of matching in connection with function
notation has proved useful. This is a limited form of higher order matching. In
a bracket in which the bound variable is ?n, a term of the form ?f @ ?n, where

41

?f is a free variable, is taken to match any term T which may correspond to it
in position, with ?f being taken to represent [T]. Notice that no stratification
problem can arise, since a term matching ?f @ ?n in this way would necessarily
be a subterm of a similar bracket term; stratification or meaningless bound
variable difficulties would not arise. A simple example should clarify what is
meant:

- defineinfix"TIMESFUN" "(?f**?g)@?x" "(?f@?x)*?g@?x";

TIMESFUN:

(?f ** ?g) @ ?x =

(?f @ ?x) * ?g @ ?x

["TIMESFUN"]

The notion of multiplication of functions is defined.

- start "[(?f@?1)*?g@?1]@?x";

- ri "EVAL"; ex();

{EVAL => [(?f @ ?1) * ?g @ ?1] @ ?x}

{(?f @ ?x) * ?g @ ?x}

- rri "TIMESFUN"; ex();

{TIMESFUN <= (?f @ ?x) * ?g @ ?x}

{(?f ** ?g) @ ?x}

- p "TIMESFUNABSTRACT";

TIMESFUNABSTRACT:

[(?f @ ?1) * ?g @ ?1] @ ?x =

(?f ** ?g) @ ?x

["TIMESFUN"]

This theorem expresses an obvious relationship between products of functions
and abstractions from products.

- s "[(?1*?1)*(?1*?1*?1)]@?x";

{[(?1 * ?1) * ?1 * ?1 * ?1] @ ?x}

- ri "TIMESFUNABSTRACT"; ex();

{TIMESFUNABSTRACT => [(?1 * ?1) * ?1 * ?1 * ?1]

@ ?x}

{([?1 * ?1] ** [?1 * ?1 * ?1]) @ ?x}

The higher-order matching function of the prover is seen to operate in the
fact that the prover can recognize that the theorem TIMESFUNABSTRACT applies

42

at all: Mark2 needs to recognize the terms ?1 * ?1 and ?1 * ?1 * ?1 as be-
ing of the forms ?f @ ?1 and ?g @ ?1, which they are not, superficially; the
functions matching ?f and ?g are constructed by abstraction ([?1 * ?1] and
[?1 * ?1 * ?1] are the functions constructed). Just as there is a change in the
definition of what it is to match a term of the form ?f @ ?n, so there is a change
in the notion of substitution into a term ?f @ ?n; if ?f is to be replaced with
an abstraction, Mark2 will replace ?f @ ?n with the body of that abstraction
(the result of removing its brackets). A simple example follows:

- s "[?f@?1]";

{[?f @ ?1]}

- assign "?f" "[?1*?1]";

{[?1 * ?1]}

This feature adds no logical strength to the prover, but it makes it possible
to avoid many routine applications of EVAL and BIND which would otherwise be
required.

4.3 Examples of Abstraction Layer Functions

We present some examples of the functions of this layer. First of all, we try to
enter an impossible term:

- start "[?1@?1]";

MARK2: Meaningless bound variable or unstratified abstraction error

{[?1 @ ?1]}

The prover warns that the term is impossible; it displays it but will not
allow a theorem to be proved from it or even allow it to be backed up onto the
desktop as a saved environment.

- start "?1";

MARK2: Meaningless bound variable or unstratified abstraction error

{?1}

Similarly, the prover will not allow a term to be entered with a bound variable
which is not bound by any bracket.

Abstraction terms are usually introduced using the BIND tactic:

43

- start "?x";

{?x}

- ri "BIND@?x"; ex(); (* introduce the identity function *)

{(BIND @ ?x) => ?x}

{[?1] @ ?x}

- ri "EVAL"; ex(); (* this tactic reverses the effect of BIND *)

{EVAL => [?1] @ ?x}

{?x}

- ri "BIND@?y"; ex(); (* introduce a constant function *)

{(BIND @ ?y) => ?x}

{[?x] @ ?y}

The term [?1] represents the identity map (when it occurs at level 0). The
term [?x] represents the constant function with value ?x everywhere.

- start "[?x]";

{[?x]}

- assign "?x" "[?1]";

{[[?2]]}

This is an example of bound variable renumbering. The assignment of the
value [?1] to ?x makes this object the constant function of the identity function.
Clearly, the bound variable needs to be bound by the innermost set of brackets,
so its index will be 2 instead of 1.

- start "[[?1]]";

MARK2: Meaningless bound variable or unstratified abstraction error

{[[?1]]}

The prover rejects the term [[?1]]. This would stand for the function which
takes each object ?1 to its constant function [?1] (the K combinator of CL),
but this abstraction does not type correctly in our scheme: the bound variable
?1 is assigned relative type −2 in this term, and for it to be stratified, it would
have to have type −1, one lower than the type of the whole term instead of two
lower.

We now attempt to construct an abstraction representing the composition
operation (a relative of the B combinator).

44

- start "?f@?g@?x";

{?f @ ?g @ ?x}

- ri "BIND@?x";

{(BIND @ ?x) => ?f @ ?g @ ?x}

- ex();

{[?f @ ?g @ ?1] @ ?x}

- left();

{[?f @ ?g @ ?1]} @ ?x

[?f @ ?g @ ?1]

- ri "BIND@?g";

{(BIND @ ?g) => [?f @ ?g @ ?1]} @ ?x

(BIND @ ?g) => [?f @ ?g @ ?1]

- ex();

{[[?f @ ?1 @ ?2]] @ ?g} @ ?x

[[?f @ ?1 @ ?2]] @ ?g

- left();

({[[?f @ ?1 @ ?2]]} @ ?g) @ ?x

[[?f @ ?1 @ ?2]]

- ri "BIND@?f"; ex();

({(BIND @ ?f) => [[?f @ ?1 @ ?2]]} @ ?g) @ ?x

(BIND @ ?f) => [[?f @ ?1 @ ?2]]

({[[?f @ ?1 @ ?2]]} @ ?g) @ ?x

[[?f @ ?1 @ ?2]]

At this point our attempt breaks down. The relative type of ?f in the selected

45

subterm is 0 (the same as the type of the selected subterm itself) instead of −1
as would be required for the abstraction to succeed. The B combinator itself
is not stratified. The problem can be seen in the fact that f and g are at the
same type in f(g(x)), and at two different types in B(f)(g)(x).

We take a different tack to solve the problem successfully:

- start "?f@?g@?x";

{?f @ ?g @ ?x}

- assign "?f" "P1@?h";

{(P1 @ ?h) @ ?g @ ?x}

- assign "?g" "P2@?h";

{(P1 @ ?h) @ (P2 @ ?h) @ ?x}

P1 and P2 are the projection operators associated with the predeclared ordered
pair operator (,); their definition is in the logical preamble, a collection of
declarations which are automatically run when the prover is invoked.

- ri "BIND@?x";

{(BIND @ ?x) => (P1 @ ?h) @ (P2 @ ?h) @ ?x}

- ex();

{[(P1 @ ?h) @ (P2 @ ?h) @ ?1] @ ?x}

- left();

{[(P1 @ ?h) @ (P2 @ ?h) @ ?1]} @ ?x

[(P1 @ ?h) @ (P2 @ ?h) @ ?1]

- ri "BIND@?h"; ex();

{(BIND @ ?h) => [(P1 @ ?h) @ (P2 @ ?h) @ ?1]} @ ?x

(BIND @ ?h) => [(P1 @ ?h) @ (P2 @ ?h) @ ?1]

{[[(P1 @ ?1) @ (P2 @ ?1) @ ?2]] @ ?h} @ ?x

[[(P1 @ ?1) @ (P2 @ ?1) @ ?2]] @ ?h

We now define a function implementing composition based on the development
above and prove that it does what we intend it to do. An EVERYWHERE tactic

46

more general than the one explicitly developed above for CL, but with essentially
the same function, is used to shorten this proof somewhat.

- defineconstant "Comp" "[[(P1 @ ?1) @ (P2 @ ?1) @ ?2]]";

(* defining theorem suppressed *)

- start "(Comp@?f,?g)@?x";

{(Comp @ ?f , ?g) @ ?x}

(Comp @ ?f , ?g) @ ?x

- ri "EVERYWHERE@Comp"; ex();

{(EVERYWHERE @ Comp) => (Comp @ ?f , ?g) @ ?x}

{([[(P1 @ ?1) @ (P2 @ ?1) @ ?2]] @ ?f , ?g) @ ?x}

- left(); ri "EVAL"; ex();

{[[(P1 @ ?1) @ (P2 @ ?1) @ ?2]] @ ?f , ?g} @ ?x

[[(P1 @ ?1) @ (P2 @ ?1) @ ?2]] @ ?f , ?g

{EVAL => [[(P1 @ ?1) @ (P2 @ ?1) @ ?2]] @ ?f , ?g}

@ ?x

EVAL => [[(P1 @ ?1) @ (P2 @ ?1) @ ?2]] @ ?f , ?g

{[(P1 @ ?f , ?g) @ (P2 @ ?f , ?g) @ ?1]} @ ?x

[(P1 @ ?f , ?g) @ (P2 @ ?f , ?g) @ ?1]

- up();

{[(P1 @ ?f , ?g) @ (P2 @ ?f , ?g) @ ?1] @ ?x}

- ri "EVAL"; ex();

{EVAL => [(P1 @ ?f , ?g) @ (P2 @ ?f , ?g) @ ?1]

@ ?x}

{(P1 @ ?f , ?g) @ (P2 @ ?f , ?g) @ ?x}

- ri "EVERYWHERE@P1"; ex();

47

{(EVERYWHERE @ P1) => (P1 @ ?f , ?g)

@ (P2 @ ?f , ?g) @ ?x}

{?f @ (P2 @ ?f , ?g) @ ?x}

- ri "EVERYWHERE@P2"; ex();

{(EVERYWHERE @ P2) => ?f @ (P2 @ ?f , ?g) @ ?x}

{?f @ ?g @ ?x}

- prove "Comp_Thm";

Comp_Thm:

(Comp @ ?f , ?g) @ ?x =

?f @ ?g @ ?x

["Comp","P1","P2"]

The construction of the Comp abstraction exemplifies the fact that “curried”
arguments (as in f(x)(y)) are not interchangeable in function in the Mark2
logic with paired arguments (as in f(x, y)); the curried arguments x and y in
the example are at different relative types, while the paired arguments are at
the same relative type.

4.4 Quantification, Types and Retractions

The function of the abstraction layer is two-fold: it handles function definition,
as we have already indicated, but it also handles quantification. The fluent
handling of quantification necessitates a further refinement of the definition of
stratification, which has the effect of providing Mark2 with logical machinery
for handling data types.

The definition of the operations of first-order logic presents no difficulties.
The operations of propositional logic are all definable using functions of the con-
ditional layer alone (we have already seen definitions of disjunction and negation,
from which definitions of all propositional connectives can be derived). A tech-
nical problem is that Mark2 is “applicative” in the sense that any operation
can be applied to any object (this is a term introduced by Curry in [4]); thus,
it is necessary to consider the effects of propositional connectives on non-truth-
values, and it is sometimes necessary to use the operator |- ?p, defined as ?p

|| true , false, to force an object to be a truth value. For example, the
double negation law becomes ∼ ∼?p = |- ?p.

Universal quantification is defined using abstraction as follows:

- defineconstant "forall@?P" "[?P@?1] = [true]";

forall:

48

forall @ ?P =

[?P @ ?1] = [true]

["forall"]

The universal quantifier is a function which, applied to a propositional func-
tion (or, in fact to any function at all) returns true if the target is a function
whose value is true everywhere, and false if the target is a function whose
value fails to be true somewhere (in the case of a propositional function, this
would imply that its value was false there, but the definition needs to apply to
all functions, for which this is not always the case). The existential quantifier
is then easily defined.

The logical machinery already provided is adequate for reasoning in first-
order logic, but the form in which the reasoning would have to be represented
would be quite peculiar. The difficulty which arises is that many natural for-
mulas of first-order logic are unstratified if represented in the most obvious way,
and the circumlocutions required to avoid this problem would make the system
very annoying to use.

An example makes the problem clear:

- start "forall@[forall@[?1=?2]]";

MARK2: Meaningless bound variable or unstratified abstraction error

The term entered should be the natural way to represent (∀x.(∀y.x = y)).
Equally clearly, this term is unstratified: the type assigned to ?1 would be −2,
and it must be −1 for the outermost bracket to be stratified.

The reason that this does not imply a lack of strength in the logic of Mark2
is that it is possible to raise and lower types of terms known to be truth values
freely. If p is a truth value, then the function application (if p then π1 else
π2)(true,false) is equal to p, but the occurrence of p in this expression is at
relative type 1 instead of 0. Similarly, (λx.p) = (λx.true) is an expression
equivalent to p (if p is a truth value) in which the relative type of p is −1. By
iterating these constructions, the type of an expression known to be a truth value
can be freely manipulated in order to get stratification conditions to hold. In the
expression above, manipulating the type of the subexpression forall@[?1=?2]

(raising it by one) would be sufficient to convert the whole expression to a
stratified form.

However, a user of a theorem proving system should not have to carry out
such operations explicitly. Experience with earlier versions of the prover con-
vinced us that fluent reasoning with nested quantifiers would remain impossible
unless the prover was given the ability to recognize expressions whose types
could be raised and lowered freely, and so given the ability to recognize a wider
range of terms as being stratified. In the case of truth values, the extended def-
inition of stratification is already in place in the related set theories, in which
one does not assign types to propositions at all, considering only relationships
between terms within atomic propositions in determining relative types.

49

The solution we adopted is more general than one which simply allows truth
values to be implicitly raised and lowered in type. A domain with the property
that variables restricted to that domain can be freely raised or lowered in relative
type is called a “strongly Cantorian set” in “New Foundations” and related
systems. A set A (sets are naturally represented in Mark2 by characteristic
functions) is strongly Cantorian iff the restriction of the K combinator (the
operator which builds constant functions) to A is implemented by a function.
In set theories, it is more natural to refer to the singleton set construction rather
than the constant function construction. We discuss these ideas in detail in our
[17].

Two functionalities were added to the prover, a basic functionality allowing
the declaration of strongly Cantorian sets, and an auxiliary functionality making
it much easier to use the basic functionality.

There is a predeclared operator : such that for any fixed t, t : ?x is
taken to represent the result of applying a retraction to ?x whose range is a
strongly Cantorian set, the identity of which depends on t. The prover knows
this because there is a predeclared axiom which asserts that (t : t : ?x)

= t : ?x (applying t with the colon operator is a retraction) and because the
definition of stratification is modified to allow the type of a term of the form t

: ?x to be raised and lowered freely (with a uniform effect on the types of its
subterms).

To solve the problem of quantification, it is sufficient to declare an atom
bool with the defining axiom (bool : ?p) = true = ?p; this tells the prover
that any term bool:?p can have its relative type freely raised and lowered. The
term forall@[bool:forall@[?1=?2]] will be stratified.

This is the basic functionality. The term t in terms of the form t : ?x is
referred to as a “type label”, and that is a good indication of the way in which
such terms are used. All domains commonly used as data types in computer
science may be assumed to be strongly Cantorian sets, and the class (it is not
a set) of strongly Cantorian sets is closed under the usual type constructors.
Elsewhere (in [12]), we have argued that an identification of the notion “strongly
Cantorian set” with the notion of “data type” is reasonable in the context of
systems like “New Foundations”.

The auxiliary functionality added to the prover which makes the basic func-
tionality of labels for strongly Cantorian types more usable is the ability to
allow the prover to recognize that certain terms belong strongly Cantorian do-
mains even though they do not have explicit type labels. For any operator +,
if there is a theorem of the form ?x + ?y = t : ?x + ?y, we say that the
operator is “scout” (this is short for “has strongly Cantorian output”), and a
declaration can be made to the prover which will cause the prover to recognize
any term of the form ?x + ?y as capable of being freely raised or lowered in
type. An operator + for which we have a theorem ?x + ?y = (s : ?x) + t

: ?y may be declared “scin” (short for “has strongly Cantorian input”; this
stronger property allows the left and right subterms of a term with this operator
to be raised or lowered in type independently of one another. Functions can also
be declared “scin” or “scout” in the presence of suitable theorems: for exam-

50

ple, the theorem forall @ ?p = bool : forall @ ?p allows us to declare
forall as “scout”, and this allows the prover to recognize the problem term
forall@[forall@[?1=?2]] as stratified without any type labels needing to be
inserted. This declaration, along with declarations of the propositional connec-
tives as “scin”, completely removes all stratification problems with a natural
notation for first-order logic.

This is a system of type inference with the curious feature that it is not
necessary for the prover to know what type any term has; it is merely necessary
for the stratification function of the prover to be able to determine that a term
belongs to some (strongly Cantorian) type.

The enhanced definition of stratification is considerably more complex to
implement, but the gain in fluency is crucial. Stratification as originally defined
is a completely local property; as we will see in examples, the new definition
of stratification, while it allows a broader class of terms to be recognized as
stratified, makes the recognition of failures of stratification a little harder.

4.4.1 Examples of Extension of Stratification

We will work in this section with the type bool of booleans.

-declareconstant "bool";

-axiom "BOOL" "bool:?x" "true=?x";

BOOL:

bool : ?x =

true = ?x

["BOOL"]

These declarations introduce the boolean type.

start "forall@[forall@[?1=?2]]";

MARK2: Meaningless bound variable or unstratified abstraction error

As above, the system will not allow us to enter this obviously legitimate quan-
tification. We show how to remedy this situation. The crucial point is that the
operator = is “scout” (its output is always of type bool).

- start "bool:?x=?y";

{bool : ?x = ?y}

- ri "BOOL"; ex();

{BOOL => bool : ?x = ?y}

{true = ?x = ?y}

51

- ri "EQUATION"; ex();

{EQUATION => true = ?x = ?y}

{(true = ?x = ?y) || true , false}

- rri "ODDCHOICE"; ex();

{ODDCHOICE <= (true = ?x = ?y) || true , false}

{(?x = ?y) || true , false}

- rri "EQUATION";

{EQUATION <= (?x = ?y) || true , false}

{?x = ?y}

- prove "EQBOOL";

EQBOOL:

bool : ?x = ?y =

?x = ?y

["BOOL","EQUATION","ODDCHOICE"]

- makescout "=" "EQBOOL";

The theorem EQBOOL is accepted by Mark2 as witnessing the fact that = has
boolean output. The term we had trouble with above still will not work, because
we also need to know that the quantifier forall has boolean output:

- s "forall@?P";

{forall @ ?P}

- ri "forall"; ex();

{forall => forall @ ?P}

{[?P @ ?1] = [true]}

- rri "EQBOOL"; ex();

{EQBOOL <= [?P @ ?1] = [true]}

{bool : [?P @ ?1] = [true]}

52

- right();

bool : {[?P @ ?1] = [true]}

[?P @ ?1] = [true]

- rri "forall"; ex();

bool : {forall <= [?P @ ?1] = [true]}

forall <= [?P @ ?1] = [true]

bool : {forall @ ?P}

forall @ ?P

- prove "ALLBOOL";

ALLBOOL:

forall @ ?P =

bool : forall @ ?P

["BOOL","EQUATION","ODDCHOICE","forall"]

- makescout "forall" "ALLBOOL";

Now we try out the offending quantification:

- start "forall@[forall@[?1=?2]]";

{forall @ [forall @ [?1 = ?2]]}

Of course, this is a false statement; one must not expect to see a proof of it! We
present a proof that it is false (long, and in a dense format):

- ri "forall"; ex();

{forall => forall @ [forall @ [?1 = ?2]]}

{[forall @ [?1 = ?2]] = [true]}

- ri "EQUATION"; ex();

{EQUATION => [forall @ [?1 = ?2]] = [true]}

{([forall @ [?1 = ?2]] = [true]) || true , false}

- right();left();

([forall @ [?1 = ?2]] = [true]) || {true , false}

true , false

([forall @ [?1 = ?2]] = [true]) || {true} , false

true

- ri "BIND@?x"; ex();

53

([forall @ [?1 = ?2]] = [true])

|| {(BIND @ ?x) => true} , false

(BIND @ ?x) => true

([forall @ [?1 = ?2]] = [true]) || {[true] @ ?x}

, false

[true] @ ?x

- left();

([forall @ [?1 = ?2]] = [true]) || ({[true]} @ ?x)

, false

[true]

- rri "0|-|1"; ex();

([forall @ [?1 = ?2]] = [true])

|| ({(0 |-| 1) <= [true]} @ ?x) , false

(0 |-| 1) <= [true]

([forall @ [?1 = ?2]] = [true])

|| ({[forall @ [?1 = ?2]]} @ ?x) , false

[forall @ [?1 = ?2]]

- up();

([forall @ [?1 = ?2]] = [true])

|| {[forall @ [?1 = ?2]] @ ?x} , false

[forall @ [?1 = ?2]] @ ?x

- ri "EVAL"; ex();

([forall @ [?1 = ?2]] = [true])

|| {EVAL => [forall @ [?1 = ?2]] @ ?x} , false

EVAL => [forall @ [?1 = ?2]] @ ?x

([forall @ [?1 = ?2]] = [true])

|| {forall @ [?x = ?1]} , false

forall @ [?x = ?1]

- assign "?x" "true";

([forall @ [?1 = ?2]] = [true])

|| {forall @ [true = ?1]} , false

forall @ [true = ?1]

- ri "forall"; ex();

([forall @ [?1 = ?2]] = [true])

|| {forall => forall @ [true = ?1]} , false

forall => forall @ [true = ?1]

([forall @ [?1 = ?2]] = [true])

|| {[true = ?1] = [true]} , false

[true = ?1] = [true]

- ri "EQUATION"; ex();

([forall @ [?1 = ?2]] = [true])

|| {EQUATION => [true = ?1] = [true]} , false

EQUATION => [true = ?1] = [true]

([forall @ [?1 = ?2]] = [true])

|| {([true = ?1] = [true]) || true , false}

, false

54

([true = ?1] = [true]) || true , false

- right();left();

([forall @ [?1 = ?2]] = [true])

|| (([true = ?1] = [true]) || {true , false})

, false

true , false

([forall @ [?1 = ?2]] = [true])

|| (([true = ?1] = [true]) || {true} , false)

, false

true

- ri "BIND@false";

([forall @ [?1 = ?2]] = [true])

|| (([true = ?1] = [true])

|| {(BIND @ false) => true} , false) , false

(BIND @ false) => true

- ex();

([forall @ [?1 = ?2]] = [true])

|| (([true = ?1] = [true]) || {[true] @ false}

, false)

, false

[true] @ false

- left();

([forall @ [?1 = ?2]] = [true])

|| (([true = ?1] = [true]) || ({[true]} @ false)

, false)

, false

[true]

- rri "0|-|2"; ex();

([forall @ [?1 = ?2]] = [true])

|| (([true = ?1] = [true])

|| ({(0 |-| 2) <= [true]} @ false) , false)

, false

(0 |-| 2) <= [true]

([forall @ [?1 = ?2]] = [true])

|| (([true = ?1] = [true])

|| ({[true = ?1]} @ false) , false) , false

[true = ?1]

- up();

([forall @ [?1 = ?2]] = [true])

|| (([true = ?1] = [true])

|| {[true = ?1] @ false} , false) , false

[true = ?1] @ false

- ri "EVAL";

([forall @ [?1 = ?2]] = [true])

|| (([true = ?1] = [true])

|| {EVAL => [true = ?1] @ false} , false)

55

, false

EVAL => [true = ?1] @ false

- ex();

([forall @ [?1 = ?2]] = [true])

|| (([true = ?1] = [true]) || {true = false}

, false)

, false

true = false

- ri "NONTRIV"; ex();

([forall @ [?1 = ?2]] = [true])

|| (([true = ?1] = [true])

|| {NONTRIV => true = false} , false) , false

NONTRIV => true = false

([forall @ [?1 = ?2]] = [true])

|| (([true = ?1] = [true]) || {false} , false)

, false

false

- up();

([forall @ [?1 = ?2]] = [true])

|| (([true = ?1] = [true]) || {false , false})

, false

false , false

- up();

([forall @ [?1 = ?2]] = [true])

|| {([true = ?1] = [true]) || false , false}

, false

([true = ?1] = [true]) || false , false

- rri "CASEINTRO"; ex();

([forall @ [?1 = ?2]] = [true])

|| {CASEINTRO <= ([true = ?1] = [true]) || false

, false}

, false

CASEINTRO <= ([true = ?1] = [true]) || false

, false

([forall @ [?1 = ?2]] = [true]) || {false} , false

false

- up();up();

([forall @ [?1 = ?2]] = [true]) || {false , false}

false , false

{([forall @ [?1 = ?2]] = [true]) || false , false}

([forall @ [?1 = ?2]] = [true]) || false , false

- rri "CASEINTRO"; ex();

{CASEINTRO <= ([forall @ [?1 = ?2]] = [true])

|| false , false}

CASEINTRO <= ([forall @ [?1 = ?2]] = [true])

|| false , false

56

{false}

- prove "NOT_SO";

NOT_SO:

forall @ [forall @ [?1 = ?2]] =

false

["BOOL","CASEINTRO","EQUATION","NONTRIV","ODDCHOICE","forall"]

This is a very low level proof, in which all the nuts-and-bolts of all three levels are
being handled “by hand”. The use of the BIND and EVAL to handle instantiation
of universal statements should be noted.

Finally we do a more complex stratification example. To facilitate matters,
we introduce a basic property of logical conjunction (&) as an axiom.

- declareinfix "&";

- axiom "ANDSCIN" "?x&?y" "(bool:?x)&bool:?y";

ANDSCIN:

?x & ?y =

(bool : ?x) & bool : ?y

["ANDSCIN"]

- makescin "&" "ANDSCIN";

- definetypedinfix "IN" 0 1 "?x<<?y" "true=?y@?x";

IN:

?x << ?y =

true = ?y @ ?x

["IN"]

- s "?x<<?y";

{?x << ?y}

- ri "IN"; ex();

{IN => ?x << ?y}

{true = ?y @ ?x}

- rri "EQBOOL"; ex();

{EQBOOL <= true = ?y @ ?x}

{bool : true = ?y @ ?x}

57

- right();

bool : {true = ?y @ ?x}

true = ?y @ ?x

- rri "IN"; ex();

bool : {IN <= true = ?y @ ?x}

IN <= true = ?y @ ?x

bool : {?x << ?y}

?x << ?y

- p "INSCOUT";

INSCOUT:

?x << ?y =

bool : ?x << ?y

["BOOL","EQUATION","IN","ODDCHOICE"]

makescout "<<" "INSCOUT";

The relation << represents the membership relation (boolean-valued functions
represent sets). We now develop some “set definitions” and sentences about set
theory somewhat in the style of “New Foundations”.

- s "[?1=?1]"; (* the universal set *)

{[?1 = ?1]}

- s "[?1<<?1]"; (* complement of the Russell class *)

MARK2: Meaningless bound variable or unstratified abstraction error

- s "[(?x<<?1)&(?1<<?x)]"; (* unobviously stratified *)

{[(?x << ?1) & ?1 << ?x]}

- s "forall@[forall@[forall@[(?1<<?2)&(?2<<?3)]]]";

(* a stratifiable assertion *)

{forall

@ [forall @ [forall @ [(?1 << ?2) & ?2 << ?3]]]}

58

- s "forall@ [forall @ [forall@[(?1 << ?2) & (?2<<?3) & (?3<<?1)]]]";

(* this is unstratified (though any two of the conjuncts are OK) *)

MARK2: Meaningless bound variable or unstratified abstraction error

{forall

@ [forall

@ [forall

@ [(?1 << ?2) & (?2 << ?3) & ?3 << ?1]]]}

4.5 Synthetic Abstraction

An aspect of the original program of the Mark2 research which has been aban-
doned is an attempt to make use of synthetic abstraction instead of variable
binding constructions. (We hope that we can be forgiven the minor remaining
eccentricity of deBruijn level notation in place of the usual bound variables).
In this section we will discuss the historical reasons why we started with a syn-
thetic approach, the non-negligible work we did in the direction of implementing
a synthetic approach, and the considerations which finally convinced us to aban-
don this approach. The development of the Mark2 tactic language was strongly
impelled by the needs of synthetic abstraction and reduction algorithms, and
the fitness of the tactic language for this purpose should be suggested by the
extended example of implementation of untyped combinatory logic above.

Work on the Mark2 project was originally inspired by our definition in our
Ph. D. thesis ([10]; better, see [11]) of a system of untyped synthetic com-
binatory logic precisely equivalent in strength and expressive power to “New
Foundations”. At the same time, we exhibited a version of this logic with a
weakening of extensionality which has the same strength and expressive power
as Jensen’s NFU + Infinity, a mathematically adequate subsystem of “New
Foundations” which is known to be consistent. The details of this system are
not important in this context, because it was never directly implemented in the
prover.

The system implemented in the first precursor of Mark2, the EFTTP system
described in our original grant proposal [13], is a weaker system, a two-sorted
synthetic combinatory logic equivalent in consistency strength and expressive
power to first-order logic on infinite domains (first order logic plus sentences
asserting “there are at least n objects” for each concrete natural number n).
The details of this system have a great deal to do with the development of
Mark2.

The system is called EFT , for “external function theory”. It is described
in our preprint [16], but most salient portions of that preprint are incorporated
into this paper below. The prover which implemented it was called EFTTP; there
are profound differences between EFTTP and Mark2, but an underlying family
resemblance remains.

59

There are two sorts of term in the language of EFT , object terms and Func-
tion terms. Our typographical convention is that object variables and constants
begin with lower-case letters, while Function variable and constants begin with
upper-case letters. The intended interpretation is that the objects are the ele-
ments of some infinite set or proper class and that the Functions are the func-
tions (possibly proper class functions) from that set into itself (or possibly a
restricted class of these functions closed under suitable operations).

t and f are distinct atomic object constants (used to represent the truth
values). If x and y are object terms, (x, y) is an object term, the ordered pair
with projections x and y. If F is a Function term and x is an object term,
F [x] is an object term, the value of F at x or the result of application of F to
x. Cond and Id are atomic Function terms. Id is intended to be the identity
Function; Cond[(x, y), (z, w)] is intended to be z if x = y, w otherwise. If x is
an object term, |x| is a Function term, the constant Function of x. If F and
G are Function terms, (F,G) is a Function term, the product of F and G, and
F 〈G〉 is a Function term, the composition of F and G. If F is a Function term,
F ! is a Function, called the “Hilbert Function” of F . F ![y] is intended to be an
object such that F [F ![y], y] is not t, if there is any such object; its value is a
matter of indifference otherwise. We write F [x, y], F 〈G,H〉, instead of F [(x, y)],
F 〈(G,H)〉, respectively. We define the n-tuple (x1, x2, ..., xn) inductively as
(x1, (x2, ..., xn)).

EFT is an algebraic theory. This means that all sentences of EFT are
equations between object terms of EFT . The rules of inference of EFT are as
follows:

A. Reflexivity, symmetry, transitivity of equality.

B. If a = c, b = d are theorems, (a, b) = (c, d) is a theorem.

C. If a = b is a theorem, F [a] = F [b] is a theorem.

D. Uniform substitution of an object term for an object variable or of a Function
term for a Function variable in a theorem yields a theorem.

Note that the rules do not directly permit substitutions of equals for equals
where object terms appear as subterms of Function terms. This was reflected
in the prover EFTTP by the fact that the navigation commands of the prover did
not allow one to move to a Function subterm or to its object subterms.

The axioms are as follows:

(CONST) |x|[y] = x

(ID) Id[x] = x

(PROD) (F,G)[x] = (F [x], G[x])

(COMP) F 〈G〉 [x] = F [G[x]]

(PROJ1) Cond[(x, x), (y, z)] = y

60

(PROJ2) Cond[(t, f), (y, z)] = z

(DIST) F [Cond[(x, y), (z, w)] = Cond[(x, y), (F [z], F [w])]

(HYP) Cond[(x, y), (F [x], z)] = Cond[(x, y), (F [y], z)]

(HILBERT) Cond[(F [F ![y], y], t), (F [x, y], t)] = t

Axioms (PROJ1), (PROJ2), (DIST), and (HYP) should be recognizable as
the basic properties of case expressions used in the discussion of the conditional
layer of the prover above. Axiom (HILBERT) is used to handle quantification
(by introducing an external choice operator); the other axioms are used to
develop a synthetic abstraction algorithm.

It should be clear that the axioms are true in the intended interpretation
(given the Axiom of Choice to support axiom (HILBERT)), and they should also
serve to clarify the exact interpretations of the term constructions. If a version
of the “intended interpretation” with a restricted class of functions interpreting
the Functions of the theory is to be constructed, the axioms indicate the set of
operations under which the restricted class of functions needs to be closed.

We have the following Abstraction Theorem:

Theorem: If s is an object term and x is an object variable which does not
appear as a subterm of any Function subterm of s, there is a function
term (λx)(s) such that x does not appear as a subterm of (λx)(s) and
“(λx)(s)[x] = s” is a theorem.

Proof: By induction on the structure of terms. If s is x, (λx)(s) is Id; if s
is an atom a distinct from x, (λx)(s) is |a|. If s is of the form (u, v),
(λx)(s) = ((λx)(u), (λx)(v)). If s is of the form U [v], U does not involve
x and (λx)(s) = U 〈(λx)(v)〉.

(λxy)(s) such that “(λxy)(s)(x, y) = s” is a theorem can be defined as
(λz)(s0), where z is a variable not appearing in s and s0 is the result of re-
placing x with Cond[(t, t), z] and y with Cond[(t, f), z] wherever they appear in
s. (λz)(Cond[(t, t), z]) and (λz)(Cond[(t, f), z]) are the projection Functions π1
and π2.

An interesting point about abstracts constructed following the proof of the
Theorem is that they are parallel in structure to the term from which they are
abstracted. This helped to make EFT appear to an environment in which it
might be practical to avoid the use of bound variables.

Theorem: EFT is equivalent in deductive strength and expressive power to
first-order logic with equality and the axiom scheme consisting of the as-
sertions “there are n objects” for each concrete n (these can of course be
expressed in first-order logic).

Proof: We begin the proof that EFT is equivalent to first-order logic with
equality + “there are n objects for each concrete n” with a model-theoretic

61

argument. Consider a first-order theory with infinite models. We con-
struct a model of EFT from an infinite model of the first-order theory by
letting a countably infinite model of the first order theory be the domain
of objects and the set of all functions from the domain of objects into itself
be the set of Functions. Since the domain of objects is infinite, there is a
map from its Cartesian product with itself into itself; use any such map
to define the pair of the interpretation of EFT (note that we could choose
a map from the Cartesian product onto the domain of objects, getting a
surjective pair). Since the model is infinite, it contains two distinct ob-
jects which can be designated as t and f . This is a case of the “intended
interpretation” of EFT (we need the Axiom of Choice to provide functions
interpreting Function terms F ! of EFT).

Observe that each predicate φ of the first-order theory, considered rela-
tive to a variable x, corresponds in a natural way to a function from the
domain of objects (which includes the domains of interpreted n-tuples of
objects for each n) to {t, f}, taking x for which φ holds to t and x for
which ∼ φ holds to f , and so can be interpreted as an EFT Function (we
actually allow all EFT Functions to interpret predicates, by having values
other than t or f interpret “false”). If F represents φ relative to x, φ will
be represented by F [x] (x may represent an n-tuple of objects as indi-
cated below). Equality can be interpreted as (λxy)(Cond[(x, y), (t, f)]). If
p and q are objects interpreting propositions P and Q, Cond[(p, t), (f, t)]
interprets ∼ P and Cond[((t, t), (p, q)), (t, f)] interprets P&Q (we recall
the convention that an object other than t or f repesents the truth value
“false”). Propositional logic can be interpreted in EFT . Thus, it is pos-
sible to interpret every quantifier-free sentence of the first-order theory.
Using the abstraction theorem, we can express a quantifier-free sentence
in the form F [(x1, x2, x3, ...)], with F containing none of the variables xi.
We now show how to quantify on x1 and get an expression of the same
form: F [x, y] = t for all x exactly if F [F ![y], y] = F 〈F !, Id〉 [y] = t, so
universal quantification with respect to x1 yields F 〈F !, Id〉 [x2, ...], an ex-
pression of the same form. If Neg abbreviates (λp)(Cond[(p, t), (f, t)]),
then Neg〈F 〉 [Neg 〈F 〉![y], y] = t exactly if Neg〈F 〉 [x, y] = t for all x, so
F [Neg〈F 〉![y], y] = F 〈Neg 〈F 〉!, Id〉 [y] = t exactly if F [x, y] = t for some y,
and so existential quantification with respect to x1 yields F 〈Neg 〈F 〉!, Id〉 [x2, ...],
again an expression of the same form. It is thus possible to interpret all
quantified sentences in prenex normal form, as long as a final dummy ar-
gument is provided in the interpretation of the quantifier-free sentence,
which is easy. Every sentence in the first-order theory can thus be inter-
preted in the model of EFT .

We now consider the model theory of EFT . An “EFT theory” is defined
as a set of equations in a language extending the language of EFT which
contains the axioms and is closed under application of the rules of EFT .
We show how to use an EFT theory to build a model of the intended
interpretation of EFT , in a way which makes it clear that the interpre-

62

tations of axioms and rules of first-order logic with equality are valid in
EFT , establishing the equivalence of the two theories.

Fix an EFT theory T. We suppose that T has some collection of object
and Function constants extending that of EFT . We assume that the set
of terms of T can be well-ordered. The objects of the model of the in-
tended interpretation which we will build will be equivalence classes of
constant terms of T under the equivalence relation of being equated by a
theorem of T. The Function terms of T will be interpreted as functions
from interpreted objects to interpreted objects; to make this possible, we
will interpret Function terms of the form F ! as actually having the form
“F”!; we will assume that the exclamation-point operator acts on names
of functions in T, not on functions themselves. The reason for this is
that we have no guarantee that F ! and G! will have the same extension
when F and G have the same extension; the axioms ensure that the other
constructions on Functions respect extension. (An alternative approach
would be to add another axiom asserting that F ! and G! have the same
extension when F and G have the same extension.)

We now observe that x = (by (CONST)) |x|[Cond[(a, b), (u, v)]] = (by
(DIST)) Cond[(a, b), (|x|[u], |x|[v])] = (by (CONST)) Cond[(a, b), (x, x)].
We also prove the following

Lemma: If x = y belongs to the minimal theory containing T and “a =
b”, then “Cond[(a, b), (x, z)] = Cond[(a, b), (y, z)]” belongs to T.

Proof: “x = y” belongs to the indicated theory if and only if there is a
proof of “x = y” from T and “a = b”. This proof can be presented
in the form x = w1 = ... = wn = y, where w1 is exactly x and wn

is exactly y, and each equation “wi = wi+1” is the result of a sub-
stitution of equals for equals based on an equation in T or the equa-
tion “a = b”. Consider the chain of equations Cond[(a, b), (wi, z)]
= Cond[(a, b), (wi+1, z)]. If wi = wi+1 is based on a substitution of
equals for equals on the basis of an equation in T, then this equa-
tion belongs to T. If wi = wi+1 is based on a substitution of a for
b or vice-versa, we can use abstraction to expand it to the form
wi = F [a] = F [b] = wi+1 (recalling that substitutions of equals for
equals are only allowed by the rules of EFT for object terms which
are not subterms of Function terms, so the abstraction theorem can
be applied), and the more complex equation can be derived from a
substitution instance of (HYP), so is an element of T.

This Lemma shows that all reasoning in theories extending T is actually
encoded in reasoning in T itself. The converse of the Lemma is obviously
true. Observe that from t = f we can deduce u = Cond[(t, t), (u, v)] =
Cond[(t, f), (u, v)] = v; a theory is universal (contains all equations) iff it
contains t = f . We now observe that Cond[(a, b), (u, v)] = (by (PROJ1)
and (PROJ2))

63

Cond[(a, b), (Cond[(t, f), (v, u)],Cond[(f, f), (v, u)])] = (apply abstraction
and (DIST))
Cond[(Cond[(a, b), (t, f)], f), (v, u)].
A similar argument shows that Cond[(a, b), (u, v)] = Cond[(Cond[(a, b), (t, f)], t), (u, v)].
The equation Cond[(a, b), (t, f)] = t would be expected to be equivalent
to a = b; it is easy to deduce the former from the latter; we deduce
the latter from the former as follows: b = (by a lemma proven above)
Cond[(a, b), (b, b)] = (by (HYP)) Cond[(a, b), (a, b)] = (prev. paragraph)
Cond[(Cond[(a, b), (t, f)], t), (a, b)] = (by hyp.) Cond[(t, t), (a, b)] = a. We
expect the equation Cond[(a, b), (t, f)] = f to correspond to the negation
of a = b, and we see that it has at least one appropriate property; note
that we can deduce Cond[(a, b), (u, v)] = v from Cond[(a, b), (t, f)] = f
and the result above. It is clear that if a = b and Cond[(a, b), (t, f)] = f ,
we can deduce t = f and all other equations (by a substitution of a
for b and (PROJ1)). We also observe that if an equation c = d follows
from T and a = b and also follows from T and Cond[(a, b), (t, f)] = f ,
it follows from T alone: c = Cond[(a, b), (c, c)] = Cond[(a, b), (d, c)] =
Cond[(Cond[(a, b), (t, f)], f), (c, d)] = Cond[(Cond[(a, b), (t, f)], f), (d, d)] =
d is a correct deduction in T.

We call an EFT theory “contradictory” iff it is the universal theory, and
“consistent” if it is not contradictory (note that a theory is consistent iff
it does not prove t = f). We can now conclude that for each consistent
theory T and equation a = b not in T, there is a consistent extension
of T which contains either a = b or Cond[(a, b), (t, f)] = f . From this
we can deduce that each consistent theory T has a consistent extension
which contains either a = b or Cond[(a, b), (t, f)] = f for each a and b
(this requires the assumption that the set of terms can be well-ordered).
We call a theory with this property “complete”. We also observe that
an equation is a theorem of T if and only if it holds in every complete
consistent extension of T.

We now build two-valued models of the intended interpretation of T. Let
T′ be a complete consistent extension of T. Let the objects of the model
be the equivalence classes of object terms of the language of T under the
relation “equated by a theorem of T′”. Let the functions of the model be
the functions from objects of the model to objects of the model induced
in the obvious way by Function terms of T, recalling that the operation !
is taken to act on names of functions, not the functions themselves. Note
that equality is actual equality, t and f are distinct (and as many distinct
objects as desired can be built using pairing, t and f), the ordered pair
is well-defined, and Id and Cond have the intended meanings, as do the
product and composition operations on functions and the Hilbert operator.
All such models are actually cases of the intended interpretation of EFT ,
and any equation true in all such models is a theorem of the theory T (if it
were not a theorem, it would be consistent to adjoin its “negation” to T,
which could be extended to a consistent complete theory). In the intended

64

interpretation of EFT , the translations of theorems of first-order logic with
equality given above are valid, so the translations of theorems of first-order
logic with equality are valid theorems of T, and the equivalence of EFT
and first-order logic with an external infinity of objects is established.

This proof is included here to support our claims about the logical adequacy
of the conditional layer of the prover. Our implementation of quantification is
different from the one used in EFT , since it relies on the presence of variable
binding machinery.

The prover EFTTP which was the first precursor of Mark2 had term structure
(and internal term data types) based exactly on the term structure of EFT , with
an extension. A third sort of FUNCTORS was introduced: the only FUNCTOR
terms are atomic constants representing operations on Functions. If FN is a
FUNCTOR and F is a Function term, FN{F} is a Function term. The presence
of pairing on Functions allowed the definition of FUNCTORS of more than one
argument. An example of a FUNCTOR which was found useful was a functor
ITER of iteration such that ITER{F,|n|} represented the Function “apply F n
times”. A further extension of the term language of EFTTP was the introduction
of rewriting annotations, which were supported by a separate term construction
rather than by a case of the usual operator construction as in Mark2; a result
of this was that the idea of introducing parameterized tactics could not even
be considered, as the data structures and parser of EFTTP did not allow for
nonatomic “theorem names” (except for a unary operation for building converses
of theorems).

Synthetic abstraction was very appealing in EFTTP, since the structure of
Functions abstracted from terms was precisely parallel to the structure of the
object term from which they were abstracted.

The reason why EFTTP was abandoned was syntactical. The syntax of EFT
was a straitjacket on the system. The immediate motivation of the development
of Mark2 was the desire to be able to use infix notation in ordinary algebra and
arithmetic. In EFTTP, the associative law of addition (for example) had to be
represented by

+[+[x?,y?],z?] = +[x?,+[y?,z?]]

At the same time, we observed the potentially polymorphic relationship be-
tween the sorts of object, Function, and FUNCTOR, which can be thought
of as types 0, 1, and 2 in the type system underlying the relative type sys-
tem of Mark2. Our already considerable familiarity with systems like “New
Foundations” predisposed us to collapse these types together and adopt an un-
typed higher-order logic regulated by stratification rather than any absolute
type scheme. Our annoyance at special term constructions went so far that
we abandoned all distinctions of kind of term except that between constant
functions and other terms, treating special term constructions such as ordered
pair, function application, and rewriting annotation as cases of the general con-
struction of infix terms. This added syntactical flexibility has been enormously

65

fruitful, as for example in the development of parameterized tactics as noted
above.

In primitive Mark2, the bracket construction was still employed strictly to
represent constant functions, and the intention was to develop synthetic ab-
straction algorithms to support the (much stronger) higher order logic which
had replaced the first-order logic of EFTTP. The only context in which strati-
fication was actually implemented was in the definition facility; but it should
be noted that the ability to define stratified functions of arbitrary order all by
itself, plus the presence of an ordered pair with left and right types 0, gave
the system the logical strength of NFU + Infinity or the theory of types of
Russell, which is far stronger than first-order logic alone. (The current system
is even stronger; the assumption that the set of natural numbers is strongly
Cantorian, which is natural to make as soon as strongly Cantorian types are
supported, gives additional strength above that of the theory of types, though
still considerably weaker than the full standard set theory ZFC .)

Synthetic abstraction of a limited kind was developed and used in Mark2.
The aim was to preserve the parallelism of structure between abstracts and
terms found in EFT , and this can be achieved in a certain limited domain.

In the very earliest versions, the abstraction tactic needed a special subtac-
tic for each operator over which abstraction was to be supported. This was
improved by the introduction of the operation on operators represented by ini-
tial colon, which has the following defining property: for each “flat” operator
(i.e., operator with both relative types zero) +, we have (?f :+ ?g) @ ?x equal
to (?f @ ?x) + (?g @ ?x). The colon converts a flat operator into the cor-
responding operation on functions. A single “built-in tactic” RAISE supported
all instances of the property of the colon operation. The algorithm which was
developed for primitive Mark2 could abstract a term relative to a variable (or
other term) ?x if the operators appearing in the term were all either function
application, with no occurrence of ?x in functions applied, or flat. The ab-
straction could be obtained from the term by replacing the variable ?x with the
identity function Id, each other atomic term outside of functions with its con-
stant function, leaving functions alone, and replacing function application with
composition; the parallelism of structure was as good as in EFT . However, the
full abstraction capabilities of Mark2 (found at that point only in the definition
facility) were considerably greater.

One indication of the unsatisfactory character of this abstraction is that it
cannot be iterated. In EFT , considerations of sort made iteration of abstrac-
tion inconceivable, but in Mark2 it could be contemplated – but not actually
carried out in an attractive way. The inability to abstract into applied functions
(which makes the abstraction “predicative”) was not even then reflected by any
weakness of the Mark2 logic; impredicative abstractions could be introduced
using the definition facility. (The prover does have a state in which abstraction
of all kinds is restricted to predicative cases alone; we do not think that this
is a practical restriction, though it has some interest because it implements a
particular fragment of “New Foundations” which has been the object of some
study).

66

A full synthetic abstraction facility “in principle” was obtained by extending
the colon operator to apply to non-flat operators. Some care had to be taken in
its definition; the relative types of :+ for non-flat operators + are the same as
for + itself, and the defining property has to be adjusted for each case of relative
types to preserve stratification. We give one example: (?f :@ ?g) @ ?x =

(?f @ [?x]) @ (?g @ ?x) (note that this permits abstraction into function
applications). However, this full synthetic abstraction lost a great deal of its
“readability”, and lost almost all of it when it was iterated (as now became
possible). Moreover, writing the full abstraction algorithm was a considerable
tour-de-force, because the prover has limited ability to abstract over operators,
and very limited ability to detect the relative types of operators in an automatic
manner. This is a disability to be expected; operators, especially non-flat ones,
are not first-class citizens of the world of the logic of Mark2.

A further reason (and really the determining reason) that synthetic abstrac-
tion was abandoned is that the practical usefulness of rewriting inside “lambda
terms” became clearer and clearer as we attempted to implement even the sim-
plest reasoning about quantifiers using synthetic abstraction. Rewriting inside
λ-terms implements a weak form of extensionality which is technically difficult
to implement in combinatory logic, as is already well-known to researchers in
this area.

The functions of the conditional layer were not present in primitive Mark2,
either, because our thinking had not yet disentangled them from an essential
involvement with abstraction. The way that a conditional which would now be
handled with 0 |-| 1 or its kind was handled is that a term (?a = ?b) ||

...?a... , ?c was first converted to the form (?a = ?b) || (?F @ ?a) ,

?c using a synthetic abstraction tactic, then converted to (?a = ?b) || (?F

@ ?b) , ?c by the application of an equational axiom expressing (HYP), then
converted to (?a = ?b) || ...?b... , ?c by a reduction algorithm. One of
the great successes of the tactic language was that this process could be invoked
as a tactic to be applied to the whole conditional expression, and it would carry
out the indicated substitution without the user ever seeing an abstraction term.
We did not become seriously disaffected from synthetic abstraction terms at
this stage, but later on when we actually had to read them (as in implementing
induction or quantification).

However, this approach to conditional rewriting has serious disadvantages.
In order to apply a rewrite justified by the hypothesis of a conditional expres-
sion, it is necessary to go up to the level of the whole conditional expression.
Moreover, there are serious headaches when it is desired to rewrite just one oc-
currence of a term which occurs in more than one place in the same case of the
relevant conditional expression; this can be circumvented by marking the target
to be rewritten in some syntactically distinctive way, but it is rather unpleasant
to have to do it. Nonetheless, we succeeded (among other things) in writing a
complete tautology checker entirely in the algebraic layer (essentially the only
layer in primitive Mark2), using synthetic abstraction and reduction algorithms
and axiom (HYP) to simulate the functionalities now handled by the conditional
and abstraction layers of the prover.

67

An effect of the functions of the conditional layer which was not anticipated
is that they actually strengthen the prover’s logic (though inessentially). The
reason for this is that, if one is limited to using abstraction in the procedure
above, a hypothesis can only be applied at its own relative type. Thus, all
reasoning in primitive Mark2, in the absence of unstratified user-declared axioms
which enable type shifting, could be viewed as reasoning in a type theory without
identifications of objects at different type levels. But the conditional layer allows
substitutions justified by hypotheses to be carried out at relative types other
than the type of the hypothesis; thus, unintentionally, the conditional layer was
the one which actually forced the built-in logic of Mark2 to be a system like
“New Foundations” instead of a merely notationally polymorphic version of type
theory (this had always been the intended interpretation, and user adoption of
unstratified axioms could exclude a notationally polymorphic interpretation as
well). This is an inessential modification, in the sense that the logical power of a
notationally polymorphic version of type theory and a genuinely untyped system
with stratified abstraction are known to be the same (as long as extensionality
is not assumed in the latter). But it is still an interesting observation.

4.5.1 Examples of Synthetic Abstraction

We present material from the proof script developing the predicative abstraction
and reduction algorithms originally used in Mark2. Its general similarity to
algorithms used in the extended combinatory logic example above should be
noted.

(* the following declaration ensures that the infix variable ^& will

match only flat infixes *)

declaretypedinfix 0 0 "^&";

(*

RAISE0:

(?f @ ?x) ^& ?g @ ?x =

(?f :^& ?g) @ ?x

[]

*)

- s "(?f@?x)^&(?g@?x)";

- ri "RAISE"; ex();

- p "RAISE0";

- dpt "ABSTRACT";

(*

ABSTRACT1 @ ?x:

?x =

68

Id @ ?x

["ID"]

*)

- s "?x";

- rri "ID";ex();

- p "ABSTRACT1@?x";

(*

ABSTRACT2 @ ?x:

?f @ ?a =

COMP <= ?f @ (ABSTRACT @ ?x) => ?a

["COMP"]

*)

- s "?f@?a";

- rri "COMP";

- right(); right(); ri "ABSTRACT@?x";

- prove "ABSTRACT2@?x";

(*

ABSTRACT3 @ ?x:

?a ^& ?b =

RAISE0 => ((ABSTRACT @ ?x) => ?a)

^& (ABSTRACT @ ?x) => ?b

[]

*)

- s "?a^&?b";

- right();

- ri "ABSTRACT@?x";

- up();left();

- ri "ABSTRACT@?x";

- top();

- ri "RAISE0";

- prove "ABSTRACT3@?x";

(*

ABSTRACT4 @ ?x:

?a =

[?a] @ ?x

[]

*)

- s "?a";

- ri "BIND@?x"; ex();

69

- p "ABSTRACT4@?x";

(* ABSTRACT@term will (attempt to) express a target term as a function

of its parameter "term" *)

(*

ABSTRACT @ ?x:

?a =

(ABSTRACT4 @ ?x) =>> (ABSTRACT3 @ ?x)

=>> (ABSTRACT2 @ ?x) =>> (ABSTRACT1 @ ?x) => ?a

["COMP","ID"]

*)

- s "?a";

- ri "ABSTRACT1@?x";

- ari "ABSTRACT2@?x";

- ari "ABSTRACT3@?x";

- ari "ABSTRACT4@?x";

- p "ABSTRACT@?x";

(* REDUCE will reverse the effect of ABSTRACT; it will "evaluate"

functions built by ABSTRACT *)

(*

REDUCE:

?f @ ?x =

(ABSTRACT4 @ ?x) <<= ((RL @ REDUCE) *> RAISE0)

<<= ((RIGHT @ REDUCE) *> COMP) =>> ID => ?f @ ?x

["COMP","ID"]

*)

- dpt "REDUCE";

- s "?f@?x";

- ri "ID";

- ari "(RIGHT@REDUCE)*>COMP";

- arri "(RL@REDUCE)*>RAISE0";

- arri "ABSTRACT4@?x";

- prove "REDUCE";

(* old approach to hypotheses *)

(* equational forms of tactics given without proof;

the proofs of the tactics involve no actual rewriting *)

PIVOT:

(?a = ?b) || ?T , ?U =

(RIGHT @ LEFT @ EVAL) => HYP => (?a = ?b)

70

|| ((BIND @ ?a) => ?T) , ?U

["HYP"]

REVPIVOT:

(?a = ?b) || ?T , ?U =

(RIGHT @ LEFT @ EVAL) => HYP <= (?a = ?b)

|| ((BIND @ ?b) => ?T) , ?U

["HYP"]

We now present examples of the use of these tactics.

- declareinfix "+"; declareinfix "*"; declareconstant "sin";

- s "2*?x+?x*?x+?y+sin@3*?x";

- ri "ABSTRACT@?x"; ex();

{([2] :* Id :+ Id :* Id :+ [?y] :+ sin @@ [3]

:* Id)

@ ?x}

It takes a little practice to see it, but the parallelism of structure here is precise.
The connective @@ represents composition of functions. Note that each atom
other than ?x is replaced with its constant function, each occurrence of ?x with
Id, each operator (except function application) with its type-raised version, and
application with composition.

Here is an example of the old style of use of hypotheses.

- s "(?y=?z)||(?x+?y+?z),?w";

{(?y = ?z) || (?x + ?y + ?z) , ?w}

- ri "PIVOT"; ex();

{(?y = ?z) || (?x + ?z + ?z) , ?w}

Notice that the substitution has been carried out without any visible fuss.

- s "(?y=?z)||(?x+?y+?z),?w";

- ri "PIVOT"; steps();

{PIVOT => (?y = ?z) || (?x + ?y + ?z) , ?w}

(RIGHT @ LEFT @ EVAL) => HYP => (?y = ?z)

|| ((BIND @ ?y) => ?x + ?y + ?z) , ?w

(RIGHT @ LEFT @ EVAL) => HYP => (?y = ?z)

|| ([?x + ?1 + ?z] @ ?y) , ?w

71

(RIGHT @ LEFT @ EVAL) => (?y = ?z)

|| ([?x + ?1 + ?z] @ ?z) , ?w

(?y = ?z) || (LEFT @ EVAL)

=> ([?x + ?1 + ?z] @ ?z) , ?w

(?y = ?z) || (EVAL => [?x + ?1 + ?z] @ ?z) , ?w

(?y = ?z) || (?x + ?z + ?z) , ?w

The version of the PIVOT tactic given here actually uses the “modern” built-in
abstraction and reduction instead of the synthetic algorithms. We leave to the
reader’s imagination what the expansion into steps would have looked like with
the original abstraction and reduction.

Attempting to undo the last operation gives us a nice opportunity to illus-
trate the main problem with PIVOT.

- left();right();

{?y = ?z} || (?x + ?z + ?z) , ?w

?y = ?z

(?y = {?z}) || (?x + ?z + ?z) , ?w

?z

- rri "ID"; ex();

(?y = {ID <= ?z}) || (?x + ?z + ?z) , ?w

ID <= ?z

(?y = {Id @ ?z}) || (?x + ?z + ?z) , ?w

Id @ ?z

- top();right();left();

{(?y = Id @ ?z) || (?x + ?z + ?z) , ?w}

(?y = Id @ ?z) || {(?x + ?z + ?z) , ?w}

(?x + ?z + ?z) , ?w

(?y = Id @ ?z) || {?x + ?z + ?z} , ?w

?x + ?z + ?z

- right();left();

(?y = Id @ ?z) || (?x + {?z + ?z}) , ?w

?z + ?z

72

(?y = Id @ ?z) || (?x + {?z} + ?z) , ?w

?z

- rri "ID"; ex();

(?y = Id @ ?z) || (?x + {ID <= ?z} + ?z) , ?w

ID <= ?z

(?y = Id @ ?z) || (?x + {Id @ ?z} + ?z) , ?w

Id @ ?z

- top();

{(?y = Id @ ?z) || (?x + (Id @ ?z) + ?z) , ?w}

- ri "REVPIVOT"; ex();

{REVPIVOT => (?y = Id @ ?z)

|| (?x + (Id @ ?z) + ?z) , ?w}

{(?y = Id @ ?z) || (?x + ?y + ?z) , ?w}

- left();right();

{?y = Id @ ?z} || (?x + ?y + ?z) , ?w

?y = Id @ ?z

(?y = {Id @ ?z}) || (?x + ?y + ?z) , ?w

Id @ ?z

- ri "ID"; ex();

(?y = {ID => Id @ ?z}) || (?x + ?y + ?z) , ?w

ID => Id @ ?z

(?y = {?z}) || (?x + ?y + ?z) , ?w

In this case, where it is only desired to apply the converse of the hypothesis
as a rewrite rule in one place, it is necessary to move back and forth between
the top of the conditional expression and the place where the change is to be
made, applying then removing syntactical markers to control the behavior of
REVPIVOT. With the full functionality of the conditional layer, both of these

73

would look precisely the same: one would apply first 0|-|1, then its converse,
in both cases at the level of the atomic term being modified. Moreover, the role
of abstraction is completely eliminated.

5 Relations to Other Work

Mark2 is not closely similar to any other work in automated reasoning. We have
discussed above its similarities to and differences from other work in the area
of rewriting. The remoteness of Mark2 from the rewriting community is best
expressed in the fact that the Knuth-Bendix algorithm and its refinements are
essentially irrelevant to the Mark2 research program, though we think that it
would be interesting to write an interface which would apply the Knuth-Bendix
algorithm to a Mark2 theory as an automatic tactic generator. Thus, rewriting
is used by Mark2 in a quite different way than it is used by a power like Otter
([20])

Genetically, Mark2 is related to the group of proof systems descended from
Edinburgh LCF, which have been referred to as “logical frameworks”, though in
a very narrow sense. We were familiar with Nuprl (though we did not have user
experience) when we started work; this inspired us to write the prover in ML.
But Mark2 does not manipulate proofs in the sense that Nuprl ([3]) or similar
systems do (proof objects could be developed as complex constructions in the
tactic language in Mark2, but this would be a very different approach from
that found in the “logical frameworks” family). Mark2 is oriented toward terms
rather than proofs or even propositions. Mark2 differs further from Nuprl and
some other “logical frameworks” in using classical non-constructive logic. The
higher-order logic based on NFU used by Mark2 is considerably less remote
from standard mathematical practice than the complex constructive higher-
order logics used by Nuprl or Coq ([6]). (This assertion may not be self-evident;
it is the thesis of my paper [12] and my pending book [17]).

The prover to which Mark2 is probably most similar in overall outlook is
HOL ([8]), though this is not at all obvious. HOL, though it is related to the
LCF provers, has abandoned their commitment to proof objects and reasons
directly in a higher order logic based on Church’s simple theory of types, which
is of about the same level of strength and readily mutually interpretable with
the stratified higher order logic of Mark2. Both systems use classical logic. We
have borrowed from HOL the idea of using the Axiom of Choice (in the form of
assuming a selection operator) to facilitate reasoning with existential quantifiers.
However, the superficial appearances of the systems are totally different, and
HOL is primarily a manipulator of propositions, where Mark2 is primarily a
manipulator of terms.

There are some incidental relationships with other systems which should
be noted. We have observed above that the “rewrite logic” proposed by the
developers of OBJ (in [19]) could readily be implemented in Mark2; banning
the converse rewriting annotation operators (<=, <<=, and <*) would restrict
the equational logic of Mark2 to rewriting logic. The theorem export system of

74

Mark2 implements the same insights as the “little theories” approach to theory
modularity of the the developers of IMPS ([7]), though the implementation in
IMPS is far more elegant. Though we had developed our system of theorem
export already when we encountered the IMPS work, the IMPS developers’
writings made it much clearer to us what we had done, and also made it clear
what further developments would be necessary. Our theorem export system
remains underutilized because it is still too awkward for ready use.

The features of Mark2 which appear to be really novel are its device for rep-
resenting tactics as equational theorems and (oddly) its facility for easy appli-
cation of rewrite rules at single locations in terms by “navigation within terms”.
The use of NFU as the higher order logic of a theorem prover is certainly novel,
and the logic of case expressions used appears to be new.

6 Implementation Issues

The title of this section involves an equivocation on the meaning of “imple-
mentation” which we now explain: there is a section here on issues related to
the implementation of the prover as a computer program, and a section on the
implementation of mathematical theories using the prover.

6.1 Implementation of the Prover

The prover is implemented in Standard ML. The facilities of this language are
naturally adapted to writing this kind of software, and we do not find anything
special to say about the implementation, except that we may (accidentally,
surely) have achieved the first computer implementation of Quine’s definition
of stratification. We say “accidentally” because stratification is a special case
of the general problem of type inference, which is of course well understood;
a much more complex system of type inference is found in the language ML
itself, for example. Stratification is of some historical interest because “New
Foundations” was one of the first polymorphic system ever defined ([21], 1937),
which would make the problem of determining whether a formula is stratified
one of the oldest instances of the problem of type inference.

We are interested in issues of resource use by the prover, especially issues
of space. Memory management for the current version of Mark2 is entirely
handled by Standard ML; in an attempt to try out some ideas for management
of data structures representing terms, we have explored the idea of implementing
the prover in C++. There is an implementation of a bare subset of the prover
in C++, written by a student, in which theorems can be proved by hand, but
which does not support the tactic language. We followed up this work (which
incorporated some but not all of the memory optimizations we had in mind)
with an implementation of the prover up to term display and navigation which
enforces maximal sharing of memory on terms and related data types. This
has not yet been upgraded to support the ability to carry out proofs, though
matching functions have been written. We find ourselves very impressed with

75

the capabilities of ML after this work. There is yet another implementation of
an old version of the prover (supporting the algebraic layer and tactics), which
runs on a PC and is written in Caml Light, another dialect of ML.

A project at the University of Idaho (see proposal [1]) has done some pre-
liminary work on a graphic user interface for the prover, which seems like an
obvious improvement to pursue. The ability to click a subterm of a displayed
term and go there would enormously streamline the navigational functions of
the prover (from the user standpoint, at least).

6.2 Implementation of Mathematical Theories

A library of elementary proof scripts is found on our Web page (address given
in the introduction), covering first-order logic (both propositional and the logic
of quantifiers), some elementary algebra and some elementary set theory. Pre-
liminary investigations of induction proofs in the natural numbers are found
there.

In logic, a complete tautology checker has been written as a tactic. There
is a set of tools which allows the emulation of tableau proofs, but the most
promising approach to doing proofs in logic (on all levels) seems to be the im-
plementation of the equational approach of Gries exemplified in [9] and applied
to program verification by Cohen in [2]. There is a file with basic declarations
for an implementation of Cohen’s approach to program verification on the Web
page.

Our strongest evidence for the serviceability of the prover for projected ap-
plications in software verification and development from specifications has been
the success of students in learning to use it and using it to develop bodies of the-
ory. A undergraduate computer science student at Boise State, Michael Parvin,
has developed the results in propositional logic and quantification found in [9].
Parvin’s propositional logic work in particular has been found serviceable in the
development of further theories. A group of graduate students at the University
of Idaho is continuing this work under another grant from the Army Research
Office (see the proposal [1]).

We have also posted a file with technical developments in untyped combi-
natory logic; we are testing the applicability of Mark2 as a research tool for
investigations of such concepts as strong reduction in this area of logic.

7 Progress Made Under This Grant

The benefits to this work of the financial assistance of the Army Research Of-
fice have been inestimable (and the continuing support of the ARO for theory
development by students at the University of Idaho as proposed in [1] is appreci-
ated). The grant proposal was written from the standpoint of the EFTTP system.
By the time funding began, the transition to the primitive Mark2 system had
already been made. We were still committed to a program of using synthetic
abstraction in place of variable binding constructions.

76

The construction of mathematical theories formally verified by machine is an
extremely time-consuming task. This is especially true when the platform itself
is undergoing development; actual theory development needs to be attempted to
see what changes in the platform are needed. In this project, serious problems
with reasoning with quantifiers were revealed by our essays in theory develop-
ment: eliminating these was a multi-step process, requiring first the introduction
of explicit variable binding, then the limited higher-order matching, and finally
the development of facilities for automatic handling of strongly Cantorian types.
This evolution was completed only fairly recently, which has retarded theory de-
velopment.

Visible improvements of the prover during the period of the grant include
the introduction of parameterized tactics and tactic operators, the installation
of the entire conditional and abstraction layers (with the underlying prerequisite
sorting out of concepts crucial to prover development), and, most recently, the
implementation of strongly Cantorian types, with the “side effect” (really its
primary motivation) of the fluent implementation of quantification.

We believe that the logic of the prover has reached essentially its final form,
though there may be some further minor refinements. The theorem export
system, and theory modularity generally, still may see major modifications (or
even a fundamental shift in approach). We have some interest in developing
proof objects, which would imply refinements of the tactic language, though the
success of work with proof scripts has made this seem less urgent.

The C++ implementation of part of the prover is an experiment which we
still may carry to its conclusion, but it is not clear whether these kinds of per-
formance issues are crucial to the usability of the prover, since SML interpreters
are now available on more platforms.

This grant has supported the work of the investigator and students in start-
ing the construction of a body of mathematical theory adequate for applications,
which continues under another ARO grant at the University of Idaho. This de-
velopment work has also been the platform for user testing, which suggests that
users of a wide range of levels of sophistication can learn to prove theorems with
this system.

8 Appendix on Personnel

Personnel who have worked on the ARO grant have been the principal inves-
tigator, M. Randall Holmes, and a number of undergraduate research assis-
tants. Karen Agnetta, Larry Campbell, Fongshing Lam, Michael Parvin, and
Brian Mayer are or were Boise State undergraduate students who worked on
the project. Of these, Michael Parvin made the greatest contribution, devel-
oping extensive proof scripts in propositional and predicate logic; Brian Mayer
also made a considerable contribution (a C++ program implementing part of the
prover), but was mainly funded from another source (see the next section for
details).

77

9 Appendix on Dissemination of Results

Two papers on the Mark2 work have been published in conference proceedings
so far.

These are

1. “Untyped λ-calculus with relative typing”, in Dezani and Plotkin, eds.,
Typed Lambda-Calculi and Applications, the proceedings of TLCA ’95,
Springer, 1995.

2. “Disguising recursively chained rewrite rules as equational theorems”, in
Hsiang, ed., Rewriting Techniques and Applications, the proceedings of
RTA ’95, Springer, 1995.

We are planning to submit a version of this final report for publication in a
suitable journal.

A monograph, Elementary Set Theory with a Universal Set ([17]), shortly
to be published by the Cahiers series of the Center for Logic in the Depart-
ment of Philosophy at the Catholic University of Louvain-la-Neuve, Belgium,
acknowledges the support of this grant with respect to one chapter, which is
related to theoretical issues underlying the Mark2 research. Another publica-
tion on theoretical issues which will acknowledge the support of this grant is a
survey of systems of first-order logic without bound variables on which I gave a
preliminary report at the 1997 Joint Mathematics Meetings in San Diego.

Two other grant proposals were funded as offshoots of this work:

1. An REU (Research Experience for Undergraduates) award through NSF
EPSCoR during summer 1995, supporting a BSU computer science un-
dergraduate who implemented an important subset of the prover in C++.

2. (with Jim Alves-Foss of the University of Idaho): “Automated Reasoning
using the Mark2 Theorem Prover”, Army Research Office proposal no. P-
36291-MA-DPS (funded by grant no. DAAH04-96-1-0397, starting date
August 1, 1996)

Development of mathematical theories under Mark2 is supported by the
latter grant; this work is continuing.

References

[1] Jim Alves-Foss and M. Randall Holmes, “Automated Reasoning using the
Mark2 Theorem Prover”, Army Research Office proposal no. P-36291-MA-
DPS (funded by grant no. DAAH04-96-1-0397, starting date August 1,
1996)

[2] Edward Cohen, Programming in the ’90’s: an introduction to the calcula-
tion of programs, Springer-Verlag, 1990.

78

[3] R. Constable and others, Implementing Mathematics with the Nuprl Proof
Development System, Prentice-Hall, Englewood Cliffs, 1986.

[4] H. B. Curry and R. Feys, Combinatory Logic, Vol. I, North Holland, Ams-
terdam, 1958.

[5] N. de Bruijn, “Lambda-calculus with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser the-
orem”, in Nederpelt, et. al., eds., Selected Papers on Automath, North
Holland 1994.

[6] G. Dowek at al., The Coq Proof Assistant User’s Guide Version 5.6. Rap-
port Technique 134, INRIA, December 1991.

[7] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer, “IMPS: an
interactive mathematical proof system”, Journal of Automated Reasoning ,
vol. 11 (1993), pp. 213-48.

[8] M. J. C. Gordon and T. F. Melham, Introduction to HOL: a theorem proving
environment for higher order logic, Cambridge University Press, 1993.

[9] David Gries and Fred B. Schneider, A Logical Approach to Discrete Math,
Springer-Verlag, 1993.

[10] M. Randall Holmes, “Systems of Combinatory Logic Related to Quine’s
‘New Foundations’ ”, Ph.D. Dissertation, State University of New York at
Binghamton, 1990.

[11] M. Randall Holmes, “Systems of Combinatory Logic Related to Quine’s
‘New Foundations’ ”, Annals of Pure and Applied Logic, 53 (1991), pp.
103-33.

[12] Holmes, M. R. “The set-theoretical program of Quine succeeded, but no-
body noticed”. Modern Logic, vol. 4, no. 1 (1994), pp. 1-47.

[13] M. Randall Holmes, “EFTTP: an interactive equational theorem prover and
programming language”, Army Research Office proposal no. P-33580-MA-
DPS (funded by grant no. DAAH04-93-G-0247).

[14] M. Randall Holmes, “Disguising recursively chained rewrite rules as equa-
tional theorems, as implemented in the prover EFTTP Mark 2”, in Rewriting
Techniques and Applications (proceedings of RTA ’95), Springer, 1995, pp.
432-7.

[15] M. Randall Holmes, “Untyped λ-calculus with relative typing”, in Typed
Lambda-Calculi and Applications (proceedings of TLCA ’95), Springer,
1995, pp. 235-48.

[16] M. Randall Holmes, “A Functional Formulation of First-Order Logic ‘With
Infinity’ Without Bound Variables”, preprint, available from the author.

79

[17] M. Randall Holmes, Elementary Set Theory with a Universal Set , volume
10 of the Cahiers du Centre de logique, Academia, Louvain-la-Neuve (Bel-
gium), 241 pages, to appear, ISBN 2-87209-488-1.

[18] Ronald Bjorn Jensen, “On the consistency of a slight (?) modification of
Quine’s ‘New Foundations’ ”, Synthese, 19 (1969), pp. 250-63.

[19] Narciso Mart́ı-Oliet and José Meseguer, “Rewriting Logic as a Logical and
Semantic Framework”, technical report SRI-CSL-93-05, SRI International,
1993.

[20] Larry Wos, et. al., Automated Reasoning: introduction and applications,
2nd ed., McGraw-Hill, 1992.

[21] W. V. O. Quine, “New Foundations for Mathematical Logic”, American
Mathematical Monthly, 44 (1937), pp. 70-80.

80

