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Abstract

Dr. Holmes will discuss the historical devel-

opment of the simple type theory of sets as a

foundation of mathematics, with side glances

at the type system of the famous Principia

Mathematica of Russell and Whitehead, at the

history of the notion of ordered pair, and more

generally at how mathematical ideas are imple-

mented in type theory (or set theory generally)

and at the end possibly explaining the famous

(in narrow circles) open problem of the consis-

tency of New Foundations.



Consumer Warning

That’s the abstract I sent when I was first

thinking about this talk. As I thought about it

more, the topic mutated a bit.

This talk is really about the idea that math-

ematical objects are implemented as sets. The

development of type theories is one of the strands

in the history of this project in mathematics.
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Mathematical objects are implemented
as sets

though what is often said is that mathematical

objects are sets. We will witness against the

second, very usual way of putting it by point-

ing out that the same mathematical structures

can be implemented in different ways. Which

sets you take as the official implementation of

some particular kind of mathematical object

(say, natural numbers) is a matter of conven-

tion. But the fact that sets are flexible enough

to implement any kind of mathematical struc-

ture that interests us is quite impressive.
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What is a set?

A set is a collection determined by its elements.

Finite sets are often written {a, b, c} (for exam-

ple), by listing their elements. Order does not

matter and repeated items do not change the

intended meaning.

The elements of the sets are not parts of the

set. The set is not made by conglomerating

its elements together. This is a common mis-

understanding.

To see this it is enough to play with the no-

tation. {x} is not the same object as x: if a

set were made up of its elements as parts, this

would not make sense. If you don’t believe

this, look at {{2,3}}: this is a set with one el-

ement, while its sole element is a set with two

elements, so they are different.
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Another way of seeing it is to notice that a

relation of part to whole should be transitive.

If a is part of b and b is part of c, then a is part

of c. But notice that 2 ∈ {2,3} and {2,3} ∈
{{2,3}}, but 2 6∈ {{2,3}}.

Infinite sets are generally presented by giving

a property we use to choose their members.

For example the set of even numbers can be

presented as the set of all natural numbers n

such that there is a natural number m such

that 2m = n. In fancy notation, {n ∈ N | (∃m ∈
N | 2m = n)}.

It is worth noting that the finite list set nota-

tion can also be presented in this way: {2,3} =

{x | x = 2 ∨ x = 3}.

Sets do have parts – the parts of a set are its

subsets. A is a subset of B (A ⊆ B) iff every

element x of A is also in B: (∀x.x ∈ A→ x ∈ B).



An extended example

We begin by working through an extended ex-

ample, the implementation of the real num-

ber line completely in terms of sets. It’s a

process that goes through several stages. [I

made some changes in these definitions from

the talk].

Initially, we are given the familiar counting num-

bers 1,2,3, . . . and we will not make any at-

tempt to explain them as sets. Yet.
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Rational numbers > 1

We implement a rational number greater than

1 (which we call a large rational number, for

convenience) as a two-element set {m,n} where

m and n are counting numbers: this represents

the fraction max(m,n)
min(m,n). In order to make sure

that we have only one set representing each

large rational number, we require that m and

n be relatively prime, so that the fraction is

in simplest form. So {3,2} represents a large

rational, but {6,4} does not.

Notice that we can define the usual order re-

lation on large rationals coded in this way, us-

ing the equivalence of p
q < r

s and ps < qr:

{p, q} < {r, s} is defined as max(p, q)min(r, s) <

max(r, s)max(p, q).
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Real numbers ≥ 1

The idea of our implementation of a real num-

ber r ≥ 1 (which we will call a large real num-

ber for convenience) is that we will represent

it as the set of all large rationals q with q > r.

[I changed this definition from what I gave in

the talk]

To put it this way is cheating, since we sup-

posedly aren’t familiar with real numbers yet.

However, its not that difficult.
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Our definition of a large real number is “a
nonempty set R of large rational numbers such
that for any large rationals p, q, if p ∈ R and
q > p then q ∈ R (R is upward closed), and also
for any p ∈ R, there is q < p which is in R (R
has no smallest element)”. [again, definition
changed]. A set of positive rationals of this
form is the intersection of the set of rationals
with an interval of the form (r,∞) for some real
number r ≥ 1 (we use the least upper bound
[actually greatest lower bound] property of the
real numbers to show this), so this should give
a coding for reals ≥ 1. We exclude intervals
with a smallest element because this would
give us two different sets coding each large
rational considered as a real. Notice also that
the large real 2 (for example) is the set of all
large rationals greater than than the large ra-
tional 2 (coded by the set {1,2}); it is not the
same object as the large rational 2 itself.

Notice that the large real 1 is the set of all
large rationals.
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Real numbers

A real number will be coded by a set {n,R}
where n is a natural number and R is a large
real (it is important that no natural number is
a large real). The motivation is that this set
codes the real number R − n. To ensure that
we have unique codes, we require that either
n = 1 or R < 2. (2 here means the large real 2,
which is the set of all large rationals less than
the large rational 2; the relation ≤ on large
reals is just the subset relation).

Any real number r will be coded by {R,n}
where n is the smallest counting number such
that r + n ≥ 1 and R is the set coding r + n.

I’m relying on your knowledge about the sys-
tems of numbers we are trying to represent
to convince you that these representations will
work. It is also possible to define familiar rela-
tions and operations on these representations
of numbers and prove that they have the prop-
erties that we expect.
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A little history

This is similar in spirit to the first set-theoretical

constructions of the real line. It is quite differ-

ent in details; I actually created this particular

implementation for this talk, with some ma-

licious intent. There is an important mathe-

matical idea that I am carefully avoiding here

for simplicity.

Can anyone tell me what it is?
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Ordered pairs

A very important mathematical construction is

the ordered pair . The ordered pair (a, b) has a

and b as components, but also has an intended

order on them. {a, b} = {b, a}: the two element

set is an unordered pair. But (a, b) = (b, a) only

if a = b.

Ordered pairs can be represented as sets. The

representation that is usually used now is (a, b) =

{{a}, {a, b}}. A quick way to show that this

works as a definition of ordered pair is to show

that there is a way to pick out the first com-

ponent and the second component. The first

component a is the unique object which be-

longs to all elements of (a, b) = {{a}, {a, b}},
and the second component b is the unique ob-

ject which belongs to exactly one of these ele-

ments. To see that this is useful, observe that
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it works for pairs (a, a) = {{a}, {a, a}} = {{a}}
as well.

There are other ways to implement the pair.

Historically, the first definition of a pair as a set

was given by Wiener in 1914, defining (a, b) as

{{{a}, ∅}, {{b}}}.

It is important to notice that once you have

given a definition of (a, b) and shown that for

any a and b you can construct (a, b) and from

any pair (a, b) you can determine the first pro-

jection and the second projection, you should

never need to look at the details of the defini-

tion of the pair again.



Things we avoided in our construction

It is usual to represent fractions m
n by ordered

pairs (m,n) in the construction above (which

allows us to represent all positive rationals rather

than the positive rationals greater than 1).

It is also usual to use the important mathemat-

ical device of equivalence classes. We made

sure that we had a single object coding m
n by re-

quiring gcd(m,n) = 1: another approach (and

the more usual one) is to define (m,n) ∼ (p, q)

as holding when mq = np and represent m
n as

{(p, q) | (p, q) ∼ (m,n)}.

We are rather pleased with the economy of our

approach.
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Uses of the ordered pair

Once you have the ordered pair you can for

example represent points in the plane as pairs

of real numbers.

You can represent functions and relations as

sets of ordered pairs: a familiar function like

y = x2 can be coded as the set of pairs of real

numbers (x, x2), which can be viewed as simply

the familiar graph of this function.
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So, what are we assuming about sets
here?

If we are going to implement mathematical ob-

jects as sets and prove that these implemen-

tations have the correct properties, we must

have some basic knowledge about sets!

The criterion of identity of two sets is simple.

Two sets are the same if and only if they have

the same elements.

For any sets A and B, A = B if and only if for

every x, x is an element of A if and only if x is

an element of B.

In logical notation, (∀AB.set(A) ∧ set(B) →
(A = B ↔ (∀x.x ∈ A↔ x ∈ B)))

This is called the axiom of extensionality.
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The axiom of comprehension

The other basic axiom allows us to construct

sets.

For any property we can express about objects,

there is a set whose elements are exactly the

objects with that property.

For any property P (x) of objects x, there is a

set A such that for any x, x ∈ A↔ P (x).

Even more formally, for any sentence φ of our

language in which the variable A does not ap-

pear, (∃A.set(A)∧(∀x.x ∈ A↔ φ)) is an axiom.

The set A is generally written {x | φ}.
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Comprehension is sufficient for our con-
structions

All the sets we have constructed can be built

using comprehension. It is useful to notice that

∅, the empty set, is {x | x 6= x}.

The unordered pair {a, b} can be defined as

{x | x = a ∨ x = b}, the set of all x such that

either x = a or x = b.

The set Qlarge of large rationals can be defined

as {{m,n} | m ∈ N∧n ∈ N∧m 6= n∧gcd(m,n) =

1}, where N is the set of positive natural num-

bers.

And, to give a long example, the set Rlarge

of large reals that I defined above is {R | R ⊆
Qlarge ∧R 6= ∅ ∧ (∀p ∈ R.(∀q > p.q ∈ R)) ∧ (∀p ∈
R.(∃q ∈ R.q < p))}
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Comprehension (as we have stated it)
is false! Russell’s paradox

It took some time to notice that the apparently

very nice scheme of set theory that I have just

defined is nonsense. It is all the more surprising

because the proof that it is nonsense is very

short.

Consider R = {x | x 6∈ x}, the set of all sets

which are not elements of themselves.

For any x, x ∈ R iff x 6∈ x.

so in particular R ∈ R iff R 6∈ R. Oops.

This was a considerable scandal. It’s usually

called a “paradox”, which is rather portentous,

as if it represents some essential problem with

human reason. I prefer to simply call it a mis-

take.
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An easy way of presenting the mistake is this:
we don’t really think of collections of com-
pletely arbitrary objects. We think instead of
collections of objects of a particular kind. For
example a graph of a real function is a set of
points in the plane. Or a large real is a partic-
ular kind of set of large rationals.

A way of codifying this entirely in terms of
sets which leads to a very standard treatment
of set theory is to replace the axiom of com-
prehension, asserting that {x | φ} exists, with
the more restricted axiom which asserts that
{x ∈ A | φ} exists: the collection of all things
with a given property which belong to a previ-
ously given set A exists.

This is called the axiom of separation, and it
is a basic axiom in the system of set theory
proposed by Zermelo in 1908, which is the di-
rect ancestor of the system of set theory ZFC
which is described in a chapter 0 in many mod-
ern mathematical texts.
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The simple theory of types

I’ll present a different solution to the same mis-

take, which is historically a bit older than Zer-

melo’s set theory (that is, it was suggested by

Bertrand Russell in 1903) but due to a techni-

cal problem which I may explain later was not

actually presented until at least 1914, and pos-

sibly not really spelled out in the form I give

until about 1930.

The underlying idea is as I said above that

when we define a set, it is always a set of

objects of a particular kind. In Zermelo’s ap-

proach, the kinds of object are sets themselves.

In the theory of types, the kinds are handled

by the grammar of our language.

The kinds of object are indexed by the natural

numbers, and called types. Type 0 is called the

type of “individuals”, about which we know
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nothing (we might like to assume that there

are infinitely many of them). When type i has

been defined, we define type i+ 1 as the type

inhabited by collections of type i objects.

This is enforced grammatically by providing

that each of our variables has a number as-

sociated with it (its type) and that a sentence

x = y is grammatical iff the type of x and the

type of y are the same, while a sentence x ∈ y
is grammatical iff the type of y is the successor

of the type of x.



The grammar doesn’t really need num-
bers

The reference to numbers in the description of

TST is not essential, just a matter of conve-

nience. Philosophers have criticized the the-

ory of types on the grounds that it supposedly

presupposes knowledge of numbers in the type

scheme: this just isn’t true.

x is an individual variable. If y is an individual

variable, so is y∗.

An individual variable is a variable. If y is a

variable, so is y′.

If x and y are individual variables, x = y and

x ∈ y′ are well-formed sentences.

If u = v is a well-formed sentence, so is u′ = v′.
If u ∈ v is a well-formed sentence, so is u′ ∈ v′.
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A variable consisting of x followed by m stars

and then n primes can be written xnm, where n

indicates its type. The sentences generated by

the grammar above are exactly the sentences

allowed by our typing rules, and with no refer-

ence to numbers. But it’s much more conve-

nient to talk about the numbered types!



The axioms of the theory of types

are exactly the same as the axioms of our bro-

ken set theory above! The only difference is

that we are restricted by our grammar in what

sentences we write.

A sentence of the shape

(∀AB.(A = B ↔ (∀x.x ∈ A↔ x ∈ B)))

is an axiom as long as it is grammatical: that

is, if x is of type n, A and B must be of type

n+1. We left out the explicit condition that A

and B are sets because any object represented

by a variable with type n+ 1 is a set of type n

objects.

For any sentence φ of our language in which

the variable A does not appear,

(∃A.(∀x.x ∈ A ↔ φ)) is an axiom. The set

A is generally written {x | φ} (this notation
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being of type one higher than that of x; not

only variables but any names must have types).

Here the type of A must be one higher than

the type of x and the sentence φ must satisfy

the rules of our grammar.

For example, there is no way to make sense

of R = {x | x 6∈ x}, because we would need x

to be of a type which was its own successor,

which does not happen.



Developing the natural numbers in the
theory of types

Frege proposed a definition of the natural num-

ber n in general which might seem circular but

turns out not to be. It works in the naive set

theory originally proposed above (which breaks

as we have seen) but it also works in the theory

of types, though there is something odd about

it which I will point out in due course.

The basic idea is to define n as the set of all

sets with n elements. This certainly sounds

circular, but watch me.
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We define the number 0 as {∅} (the set of all

sets with 0 elements!). We can define ∅ as

{x | x 6= x} – we should really call this some-

thing like ∅i+1 where i is the type of the vari-

able x. We can define {x} as {y | y = x}: notice

that if x is of type i, so is y, and {x} must be

assigned type i + 1. The empty set ∅ can be

defined in each type i+ 1 and its singleton 0 is

defined in each type i+ 2. We do not say that

the empty sets or zeroes in different types are

the same or different – because our grammar

doesn’t allow us to!

For any set A, define A+ 1 as

{a ∪ {x} | a ∈ A ∧ x 6∈ a}. Notice that if x is of

type i, a must be of type i+ 1 and A must be

of type i + 2 – and A + 1 is of the same type

i + 2. A + 1 is the collection of all sets which

can be obtained by adding one new element to

an element of A.
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So clearly 0 + 1, which we will call 1, is the

collection of all sets with one element, 1+1,

which we will call 2, is the collection of all sets

with exactly two elements, and so forth.

We define N, the set of natural numbers, as

{n | (∀I.(0 ∈ I ∧ (∀m ∈ I.m+ 1 ∈ I))→ n ∈ I)}.
That is, n is a natural number iff it belongs to

every inductive set.

If we replace 0 with 1 in the definition of N,

we get the set of counting numbers (positive

natural numbers) which we used in our con-

struction above.

Notice that each natural number can be con-

structed in each type i + 2, and the set of

natural numbers in any type i + 3. The type

i+2 number three for example is the type i+2

set of all type i+1 sets with exactly three type

i elements.



Importing our other number construc-
tions

If m and n are positive natural numbers of type
i, we can construct the large rational {m,n} of
type i+1 as above. Large rationals of type i+1
can be collected into type i + 2 sets, some of
which will be large reals. A technical modifi-
cation is needed for the definition of reals: we
define a large real as a type i+3 unordered pair
of a type i+2 large real and a double singleton
{{n}} of a type i positive natural number. We
need to apply the singleton operation to shift
the type of the natural number upward so that
it can be paired with the large real.

If a and b are type i objects, the pair (a, b) =
{{a}, {a, b}} is of type i+ 2. Thus a pair of the
reals just constructed would be constructible
in type i+ 5 and the plane R2 containing these
pairs would be constructed at type i+6 (which
is also where the graph of the real function
y = x2 would be found).
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A little history

I did promise history. So far I have given some

flavor of why the theory of types is a medium

in which we can develop implementations of

mathematical concepts. Russell suggested ba-

sically the same scheme of types that I pre-

sented here in his Principles of Mathematics in

1903, but when he formally developed math-

ematics from logic in Principia Mathematica

(with Whitehead) in 1910-1913 he used a much

more complicated system of types. This is be-

cause he had a technical problem: he knew

he had to represent functions and relations in

mathematics, and he even knew that a func-

tion or relation was a set of ordered pairs, but

he did not know how to implement an ordered

pair as a set: this was discovered by Wiener

in 1914. Zermelo had the same problem in his

1908 presentation of set theory.
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So if you ever read the Principia of Russell and

Whitehead, you will discover a weirdly complex

system of types. There is a type of individuals

0. For any list of types (τ1, . . . , τn) there is a

type of n-ary relations between objects (taken

in order) of the given types. If R were a type

inhabited by real numbers (RR) would be the

type of relations on real numbers. If P were

the type of points on a plane, and R the type

of real numbers, (RPP) would be the type of

the relation “d is the distance between P and

Q”, which we would be inclined to present as a

set of ordered triples. Even worse, there is no

notation for types in the Principia at all; later

readers invented notation for the types.

Once the notation for the pair is introduced,

there is no need for such a complex system.

The simple linear hierarchy of individuals, sets

of individuals, sets of sets of individuals and so

forth is sufficient.



Contrast with Zermelo’s set theory

In the set theory of Zermelo, there are no

types. A sentence like x ∈ x is perfectly gram-

matical.

The restriction of comprehension is that we do

not assert the existence of a set of all things

with a given property: if we are given a set A

and a property P (x), we can assert the exis-

tence of {x ∈ A | P (x)}, the set of all things

in the set A which have the property P (x).

The bounding set A is playing a very similar

role here, implementing the idea that when we

build a set, we are not taking its elements from

the whole universe but from a particular sort

of object.

We need sets to work with: you do not get a

set {x ∈ A | P (x)} unless you already have a set

A you got in some other way. In the system
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of Zermelo, we are also told that we can build
unordered pairs {a, b},
power sets P(A) = {B | B ⊆ A} (the set of all
subsets of A) and
union sets

⋃
A = {x | (∃a ∈ A.x ∈ a)}, the set

of all elements of elements of A.

If we define 0 as ∅ and define A+ 1 as {A}, we
can define N as the intersection of all inductive
sets in much the way we did above, though the
resulting implementation of the natural num-
bers will look quite different. The existence of
N is provided as an axiom.

The numbers in Zermelo set theory are ∅, {∅}, {{∅}} . . ..
This was Zermelo’s definition. It is more usual
now to use von Neumann’s definition A+ 1 =
A ∪ {A}, which has the effect that 0 = ∅; 1 =
{0},2 = {0,1},3 = {0,1,2} . . ..

Zermelo set theory (and the more modern ZFC
have the advantage that their language is un-
constrained by the grammatical rules of typing.



They have the possible disadvantage that the

list of set constructions looks rather arbitrary:

the axioms of the theory of types are exactly

the simple axioms of the original broken theory

of sets, with a repair to our language. His-

torically, Zermelo set theory won out as the

generally used foundation of mathematics, but

type theory still has a niche of its own: more

complex typed theories (with types inhabited

by functions and relations as well as just sets)

have applications in computer science, for ex-

ample.



The non-paradox of Zermelo

What happens when we consider
RA = {x ∈ A | x 6∈ x}? We aren’t prevented
from talking about this as we are in the theory
of types.

x ∈ RA iff x ∈ A and x 6∈ x.

So RA ∈ RA iff RA ∈ A ∧RA 6∈ RA.

Clearly if RA ∈ RA we would have a contradic-
tion.

Also if RA ∈ A ∧ RA 6∈ RA we would have a
contradiction.

So the only way to avoid contradiction is for
RA 6∈ A and RA 6∈ RA.

This shows that for every set A there is at
least one set RA 6∈ A: there cannot be a set
which contains every object as an element. In
Zermelo’s theory, there can be no universal set.
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New Foundations

And finally. . . Notice that every object we con-

structed we can actually build at every type

above an arbitrarily chosen type i. If we are

counting type i objects, we use type i+2 num-

bers; this same relativity applies to all struc-

tures in the theory of types. Further, what-

ever we can prove about a class of mathemat-

ical structures defined in type theory, we can

prove about the analogously defined structures

in each higher type.

The philosopher and logician W. v. O. Quine

proposed a simplification of the theory of types

in 1937. He suggested that perhaps the types

are all the same. The theory he defined is

called NF, for “New Foundations”, a name

taken from the title of the article he proposed

it in.
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New Foundations has no grammar distinctions.
Any sentence you can write with equality and
membership is grammatical. But the axioms of
comprehension that are allowed are only those
which would be grammatical in the theory of
types with some assignment of types to the
variables.

This avoids the Russell paradox and seems to
avoid other known paradoxes, but it is not
known whether this set theory is really safe
to work with.

In this theory, the set 3 that we defined above
turns out to be the actual set of all sets with
three elements (so for example {1,2,3} ∈ 3)
which is a bit dizzying. . . The set
{x | x = x}, which is the type i + 1 collection
of all type i objects in the theory of types, is
the actual universal set (it contains everything
as an element) in New Foundations.

With that we will stop.


